Skip to main content

Human diagrammatic reasoning and seeing-as


The paper addresses the issue of human diagrammatic reasoning in the context of Euclidean geometry. It develops several philosophical categories which are useful for a description and an analysis of our experience while reasoning with diagrams. In particular, it draws the attention to the role of seeing-as; it analyzes its implications for proofs in Euclidean geometry and ventures the hypothesis that geometrical judgments are analytic and a priori, after all.

This is a preview of subscription content, access via your institution.


  1. Audi R.: Reasons/causes. In: Dancy, J., Sosa, E. (eds) A companion to epistemology, pp. 424–426. Blackwell, Oxford (1992)

    Google Scholar 

  2. Avigad, J., Dean, E., & Mumma J. (2008). A formal system for Euclid’s Elements. Review of Symbolic Logic, forthcoming.

  3. Boghossian P.: Epistemic rules. Journal of Philosophy 105(9), 472–500 (2008)

    Google Scholar 

  4. Byrne O.: The first six books of the elements of Euclid. William Pickering, London (1847)

    Google Scholar 

  5. Coliva A.: Wright and McDowell on the content of experience and the justification of empirical beliefs. Lingua e Stile 36(1), 3–23 (2001)

    Google Scholar 

  6. Coliva A.: In difesa del contenuto non concettuale della percezione. In: Parrini, P. (eds) Conoscenza e cognizione, pp. 147–161. Guerini, Milano (2002)

    Google Scholar 

  7. Coliva A.: The finer-grained content of experience. A redefinition of its role within the debate between McDowell and nonconceptual theorists. Dialectica 57(1), 57–70 (2003)

    Article  Google Scholar 

  8. Coliva, A. (2004/2006). I concetti. Roma: Carocci.

  9. Euclid. (1959). Elements, published as Euclid’s Elements: All thirteen books complete in one volume (T. Heath, Trans., D. Densmore, Ed.). New York: Dover Books.

  10. Giaquinto, M. (2007a). Visual thinking in mathematics. An epistemological study (esp. Chaps. 1–5). Oxford, OUP

  11. Giaquinto M.: Visualizing in mathematics: An introduction. In: Mancosu, P. (eds) The philosophy of mathematical practice, pp. 32–58. Clarendon Press, Oxford (2007b)

    Google Scholar 

  12. Giardino, V. (ms.). Diagrams and manipulation practices: The margins for an empirical research.

  13. Glasgow, J., Narayanan, N. H., Chandrasekaran, B. (eds): Diagrammatic reasoning: Cognitive and computational perspectives. MIT Press, Cambridge, MA (1995)

    Google Scholar 

  14. Macbeth D.: Diagrammatic reasoning in Euclid’s Elements”. In: Van Kerkhove, B., De Vuyst, J., Van Bendegem, J.-P. (eds) Philosophical perspectives on mathematical practice, pp. 235–267. College Publications, London (2010)

    Google Scholar 

  15. Macbeth, D. (2011). Diagrammatic reasoning in Frege’s Begriffßchrift. this issue, Vol. 2.

  16. Malone M. E.: Kuhn reconstructed: Incommensurability without relativism. Studies in History and Philosophy of Science 24(1), 66–93 (1993)

    Article  Google Scholar 

  17. Manders K.: Diagram-based geometric practice. In: Mancosu, P. (eds) The philosophy of mathematical practice, pp. 88–111. Clarendon Press, Oxford (2007a)

    Google Scholar 

  18. Manders K.: The Euclidean diagram. In: Mancosu, P. (eds) The philosophy of mathematical practice, pp. 112–183. Clarendon Press, Oxford (2007b)

    Google Scholar 

  19. McDowell J.: Mind and world. Harvard University Press, Cambridge, MA (1994)

    Google Scholar 

  20. Netz R.: The shaping of deduction in Greek mathematics. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  21. Owens K., Outhred L.: The complexity of learning geometry and measurement. In: Gutiérrez, A., Boero, P. (eds) Handbook of research on the psychology of mathematics education, pp. 83–115. Sense Publishers, Rotterdam (2006)

    Google Scholar 

  22. Panza, M. (2011). The two-fold role of diagrams in Euclid’s plain geometry. this issue, Vol. 2.

  23. Peacocke C.: A study of concepts. MIT Press, Cambridge, MA (1992)

    Google Scholar 

  24. Saito K.: A preliminary study in the critical assessment of diagrams in Greek mathematical works. Sciamus 7, 81–144 (2006)

    Google Scholar 

  25. Shin, S. J. (2008). Review of Giaquinto 2007a. Notre Dame Philosophical Reviews. Accessed July 29, 2008, from

  26. Shin, S. J. (2011). The forgotten individual: Diagrammatic reasoning in mathematics. this issue, Vol. 2.

  27. Wittgenstein L.: Philosophical investigations. Blackwell, Oxford (1953)

    Google Scholar 

  28. Wittgenstein L.: Remarks on the philosophy of psychology (Vols. 1, 2). Chicago University Press, Chicago (1980)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Annalisa Coliva.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Coliva, A. Human diagrammatic reasoning and seeing-as. Synthese 186, 121–148 (2012).

Download citation


  • Diagrammatic reasoning
  • Seeing-as
  • Geometrical concepts
  • Euclidean geometry
  • A priori
  • Analytic