Explanation and description in computational neuroscience

Abstract

The central aim of this paper is to shed light on the nature of explanation in computational neuroscience. I argue that computational models in this domain possess explanatory force to the extent that they describe the mechanisms responsible for producing a given phenomenon—paralleling how other mechanistic models explain. Conceiving computational explanation as a species of mechanistic explanation affords an important distinction between computational models that play genuine explanatory roles and those that merely provide accurate descriptions or predictions of phenomena. It also serves to clarify the pattern of model refinement and elaboration undertaken by computational neuroscientists.

This is a preview of subscription content, access via your institution.

References

  1. Aizawa K. (2010) Computation in cognitive science: It is not all about Turing-equivalent computation. Studies in History and Philosophy of Science Part A 41(3): 227–236

    Article  Google Scholar 

  2. Andersen R. A., Essick G. K., Siegel R. M. (1985) Encoding of spatial location by posterior parietal neurons. Science 230: 450–458

    Article  Google Scholar 

  3. Andersen R. A., Mountcastle V. B. (1983) The influence of the angle of gaze upon the excitability of light-sensitive neurons of the posterior parietal cortex. Journal of Neuroscience 3: 532–548

    Google Scholar 

  4. Batterman R. (2002) Asymptotics and the role of minimal models. The British Journal for the Philosophy of Science 53(1): 21–38

    Article  Google Scholar 

  5. Batterman R. (2009) Idealization and modeling. Synthese 169: 427–446

    Article  Google Scholar 

  6. Bechtel W. (2002) Decomposing the brain: A long term pursuit. Brain and Mind 3: 229–242

    Article  Google Scholar 

  7. Bechtel W. (2008) Mental mechanisms: Philosophical perspectives on cognitive neuroscience. Routledge, London

    Google Scholar 

  8. Bechtel W., Abrahamsen A. (2005) Explanation: A mechanistic alternative. Studies in History and Philosophy of the Biological and Biomedical Sciences 36: 421–441

    Article  Google Scholar 

  9. Bechtel W., Mundale J. (1999) Multiple realizability revisited: Linking cognitive and neural states. Philosophy of Science 66: 175–207

    Article  Google Scholar 

  10. Bechtel W., Richardson R. C. (1993) Discovering complexity: Decomposition and localization as strategies in scientific research. Princeton University Press, Princeton, NJ

    Google Scholar 

  11. Bickle J. (1998) Psychoneural reduction: The new wave. Bradford/MIT Press, Cambridge, MA

    Google Scholar 

  12. Bogen J. (2005) Regularities and causality; generalizations and causal explanations. Studies in History and Philosophy of Science Part C 36(2): 397–420

    Article  Google Scholar 

  13. Bogen J. (2008) The Hodgkin–Huxley equations and the concrete model: Comments on Craver, Schaffner, and Weber. Philosophy of Science 75(5): 1034–1046

    Article  Google Scholar 

  14. Brozović M., Abbott L. F., Andersen R. A. (2008) Mechanism of gain modulation at single neuron and network levels. Journal of Computational Neuroscience 25: 158–168

    Article  Google Scholar 

  15. Bunge M. (1964) Phenomenological theories. In: Bunge M. (eds) The critical approach: In honor of Karl Popper. Free Press, New York

    Google Scholar 

  16. Catterall W. A. (2000) From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels. Neuron 26(1): 13–25

    Article  Google Scholar 

  17. Chance F. S., Abbott L. F., Reyes A. D. (2002) Gain modulation from background synaptic input. Neuron 35: 773–782

    Article  Google Scholar 

  18. Chemero A., Silberstein M. (2008) After the philosophy of mind: Replacing scholasticism with science. Philosophy of Science 75: 1–27

    Article  Google Scholar 

  19. Churchland P. S. (1986) Neurophilosophy. MIT Press, Cambridge, MA

    Google Scholar 

  20. Churchland P. M. (2005) Functionalism at forty: A critical retrospective. Journal of Philosophy 102(1): 33–50

    Google Scholar 

  21. Churchland P. S., Koch C., Sejnowski T. J. (1988) Computational neuroscience. Science 241: 1299–1306

    Article  Google Scholar 

  22. Cole K. S., Moore J. W. (1960) Potassium ion current in the squid giant axon: Dynamic characteristic. Biophysical Journal 1: 1–14

    Article  Google Scholar 

  23. Craver C. F. (2001) Role functions, mechanisms, and hierarchy. Philosophy of Science 68(1): 53–74

    Article  Google Scholar 

  24. Craver C. F. (2006) When mechanistic models explain. Synthese 153: 355–376

    Article  Google Scholar 

  25. Craver C. F. (2007) Explaining the brain. Oxford University Press, Oxford

    Book  Google Scholar 

  26. Craver C. F. (2008) Physical law and mechanistic explanation in the Hodgkin and Huxley model of the action potential. Philosophy of Science 75: 1022–1033

    Article  Google Scholar 

  27. Crick F. (1989) The recent excitement about neural networks. Nature 337: 129–132

    Article  Google Scholar 

  28. Cummins R. (1975) Functional analysis. Journal of Philosophy 72: 741–765

    Article  Google Scholar 

  29. Cummins R. (1983) The nature of psychological explanation. Bradford/MIT Press, Cambridge, MA

    Google Scholar 

  30. Cummins R. (2000) “How does it work?” vs. “What are the laws?” Two conceptions of psychological explanation. In: Keil F., Wilson R. (eds) Explanation and cognition. MIT Press, Cambridge, MA, pp 117–145

    Google Scholar 

  31. Dawson M. R. W. (1998) Understanding cognitive science. Wiley-Blackwell, Oxford

    Google Scholar 

  32. Dayan P., Abbott L. F. (2001) Theoretical neuroscience: Computational and mathematical modeling of neural systems. MIT Press, Cambridge, MA

    Google Scholar 

  33. Downes, S. M. (1992) The importance of models in theorizing: A deflationary semantic approach. In D. Hull, M. Forbes, & K. Okrulik (Eds.), Proceedings of the Philosophy of Science Association (Vol. 1, pp. 142–153). East Lansing.

  34. Doyle D. A., Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. (1998) The structure of the potassium channel: Molecular basis of K + conduction and selectivity. Science 280: 69–77

    Article  Google Scholar 

  35. Dray W. H. (1993) Philosophy of history. (2nd ed.). Prentice Hall, Englewood, NJ

    Google Scholar 

  36. Dror I. E., Gallogly D. P. (1999) Computational analyses in cognitive neuroscience: In defense of biological implausibility. Psychonomic Bulletin & Review 6(2): 173–182

    Article  Google Scholar 

  37. Einevoll G.T. (2006) Mathematical modeling of neural activity. In: Skjeltorp A., Belushkin A.V. (eds) Dynamics of complex interconnected systems: Networks and bioprocesses NATO Science Series II: Mathematics, Physics & Chemistry. Kluwer, Amsterdam

    Google Scholar 

  38. Einevoll G. T., Heggelund P. (2000) Mathematical models for the spatial receptive-field organization of nonlagged X-cells in dorsal lateral geniculate nucleus of cat. Visual Neuroscience 17(6): 871–885

    Article  Google Scholar 

  39. Einevoll G. T., Plesser H. E. (2002) Linear mechanistic models for the dorsal lateral geniculate nucleus of cat probed using drifting-grating stimuli. Network: Computation in Neural Systems 13: 503–530

    Article  Google Scholar 

  40. Einevoll G. T., Plesser H. E. (2005) Responses of the difference-of-Gaussians model to circular drifting-grating patches. Visual Neuroscience 22(4): 437–446

    Article  Google Scholar 

  41. Enroth-Cugell C., Robson J. G. (1966) The contrast sensitivity of retinal ganglion cells of the cat. Journal of Physiology 187(3): 517–552

    Google Scholar 

  42. Ermentrout G. B., Terman D. H. (2010) Mathematical foundations of neuroscience. Springer, New York

    Book  Google Scholar 

  43. Fodor J. A. (1974) Special sciences (Or: The disunity of science as a working hypothesis). Synthese 28: 97–115

    Article  Google Scholar 

  44. Fodor J. A. (1975) The language of thought. Harvard University Press, Cambridge, MA

    Google Scholar 

  45. Forber P. (2010) Confirmation and explaining how possible. Studies in the History and Philosophy of Science Part C: Studies in the History and Philosophy of Biological and Biomedical Sciences 41(1): 32–40

    Article  Google Scholar 

  46. Haugeland J. (1978) The nature and plausibility of cognitivism. Behavioral and Brain Sciences 1: 215–226

    Article  Google Scholar 

  47. Hempel C. G. (1965) Aspects of scientific explanation and other essays in the philosophy of science. Free Press, New York

    Google Scholar 

  48. Hille B. (2001) Ion channels of excitable membranes. (3rd ed.). Sinauer, Sunderland, MA

    Google Scholar 

  49. Hille B., Armstrong C. M., MacKinnon R. (1999) Ion channels: From idea to reality. Nature Medicine 5(10): 1105–1109

    Article  Google Scholar 

  50. Hodgkin A. L., Huxley A. F. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology 117: 500–544

    Google Scholar 

  51. Johnson-Laird P. N. (1983) Mental models: Towards a cognitive science of language, inference and consciousness. Cambridge University Press, New York

    Google Scholar 

  52. Kaplan, D. M. & Craver, C. F. (forthcoming): The explanatory force of dynamical and mathematical models in neuroscience: A mechanistic perspective. Philosophy of Science.

  53. Kuffler S. (1953) Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology 16(1): 37–68

    Google Scholar 

  54. Machamer P., Darden L., Craver C. F. (2000) Thinking about mechanisms. Philosophy of Science 67: 1–25

    Article  Google Scholar 

  55. MacKinnon R. (2004) Nobel lecture: Potassium channels and the atomic basis of selective ion conduction. Bioscience Reports 24(2): 75–100

    Article  Google Scholar 

  56. Marr D. (1982) Vision: A computational investigation into the human representation and processing of visual information. W.H.Freeman & Co. Ltd, San Francisco

    Google Scholar 

  57. Marr D., Hildreth E. (1980) Theory of edge detection. Proceedings of the Royal Society of London Series B, Biological Sciences 207(1167): 187–217

    Article  Google Scholar 

  58. Marr D., Ullman S., Poggio T. (1979) Bandpass channels, zero-crossings, and early visual information processing. Journal of the Optical Society of America 69(6): 914–916

    Article  Google Scholar 

  59. Mastronarde D. N. (1992) Nonlagged relay cells and interneurons in the cat lateral geniculate nucleus: Receptive-field properties and retinal inputs. Visual Neuroscience 8(5): 407–441

    Article  Google Scholar 

  60. Mauk M. D. (2000) The potential effectiveness of simulations versus phenomenological models. Nature Neuroscience 3(7): 649–651

    Article  Google Scholar 

  61. Mazzoni P., Andersen R. A., Jordan M. I. (1991) A more biologically plausible learning rule applied to a network model of cortical area 7a. Cerebral Cortex 1: 293–307

    Article  Google Scholar 

  62. Mel B. W. (1993) Synaptic integration in an excitable dendritic tree. Journal of Neurophysiology 70: 1086–1101

    Google Scholar 

  63. Neher E. (1992) Nobel lecture: Ion channels for communication between and within cells. Neuron 8(4): 605–612

    Article  Google Scholar 

  64. Newell A., Simon H. A. (1976) Computer science as an empirical enquiry: Symbols and search. Communications of the ACM 19: 113–126

    Article  Google Scholar 

  65. Piccinini G. (2006) Computational explanation in neuroscience. Synthese 153: 343–353

    Article  Google Scholar 

  66. Piccinini G. (2007) Computing mechanisms. Philosophy of Science 74: 501–526

    Article  Google Scholar 

  67. Piccinini G. (2010) The mind as neural software? Revisiting functionalism, computationalism, and computational functionalism. Philosophy and Phenomenological Research 81(2): 269–311

    Article  Google Scholar 

  68. Piccinini, G., & Craver, C. F. (2011). Integrating psychology and neuroscience: Functional analyses as mechanism sketches. Synthese. doi:10.1007/s11229-011-9898-4.

  69. Pouget A., Sejnowski T. J. (1997) Spatial transformations in the parietal cortex using basis functions. Journal of Cognitive Neuroscience 9(2): 222–237

    Article  Google Scholar 

  70. Pouget A., Snyder L. H. (2000) Computational approaches to sensorimotor transformations. Nature Neuroscience 3(Suppl): 1192–1198

    Article  Google Scholar 

  71. Putnam, H. (1967). The nature of mental states (Reprinted from Mind, language, and reality, by Putnam, Ed., 1975, Cambridge: Cambridge University Press.)

  72. Pylyshyn Z. W. (1984) Computation and cognition. MIT Press, Cambridge, MA

    Google Scholar 

  73. Revonsuo A. (2001) On the nature of explanation in the neurosciences. In: Machamer P., Grush R., McLaughlin P. (eds) Theory and method in the neurosciences. University of Pittsburgh Press, Pittsburgh, PA, pp 45–69

    Google Scholar 

  74. Rodieck R. W. (1965) Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision Research 5(11): 583–601

    Article  Google Scholar 

  75. Rusanen A.M., Lappi O. (2007) The limits of mechanistic explanation in neurocognitive sciences. In: Vosniadou S., Kayser D., Protopapas A. (eds) Proceedings of the European cognitive science conference. Francis and Taylor, London

    Google Scholar 

  76. Salinas E., Abbott L. F. (1996) A model of multiplicative neural responses in parietal cortex. Proceedings of the National Academy of Sciences 90: 11956–11961

    Article  Google Scholar 

  77. Salinas E., Thier P. (2000) Gain modulation: A major computational principle of the central nervous system. Neuron 27: 15–21

    Article  Google Scholar 

  78. Salmon W. (1984) Scientific explanation and the causal structure of the world. Princeton University Press, Princeton, NJ

    Google Scholar 

  79. Salmon W. (1989) Four decades of scientific explanation. University of Pittsburg Press, Pittsburg, PA

    Google Scholar 

  80. Schaffner K. F. (2008) Theories, models, and equations in biology: The heuristic search for emergent simplifications in neurobiology. Philosophy of Science 75(5): 1008–1021

    Article  Google Scholar 

  81. Sejnowski T. J. (2001) Computational neuroscience. In: Smelser N. J., Baltes P. B. (eds) Encyclopedia of the social and behavioral sciences. Elsevier, Oxford, pp 2460–2465

    Chapter  Google Scholar 

  82. Shadmehr R., Wise S. (2005) Computational neurobiology of reaching and pointing: A foundation for motor learning. MIT Press, Cambridge, MA

    Google Scholar 

  83. Shagrir O. (1998) Multiple realization, computation and the taxonomy of psychological states. Synthese 114: 445–461

    Article  Google Scholar 

  84. Shagrir O. (2006) Why we view the brain as a computer. Synthese 153: 393–416

    Article  Google Scholar 

  85. Shapiro L. A. (2000) Multiple realizations. Journal of Philosophy 97: 635–654

    Article  Google Scholar 

  86. Smolensky P. (1988) On the proper treatment of connectionism. Behavioral and Brain Sciences 11: 1–23

    Article  Google Scholar 

  87. Von Eckart B., Poland J. S. (2004) Mechanism and explanation in cognitive neuroscience. Philosophy of Science 71: 972–984

    Article  Google Scholar 

  88. Weber M. (2008) Causes without mechanisms: Experimental regularities, physical laws, and neuroscientific explanation. Philosophy of Science 75(5): 995–1007

    Article  Google Scholar 

  89. Weisberg M. (2007) Three kinds of idealization. Journal of Philosophy 104(12): 639–659

    Google Scholar 

  90. Woodward J. (2003) Making things happen. Oxford University Press, New York

    Google Scholar 

  91. Zipser D., Andersen R. A. (1988) A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331: 679–684

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Michael Kaplan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kaplan, D.M. Explanation and description in computational neuroscience. Synthese 183, 339 (2011). https://doi.org/10.1007/s11229-011-9970-0

Download citation

Keywords

  • Explanation
  • Mechanism
  • Computational models
  • Computational neuroscience