, Volume 189, Issue 3, pp 433–450 | Cite as

Laws and constrained kinds: a lesson from motor neuroscience

  • Brandon Towl


In this paper, I want to explore the question of whether or not there are laws in psychology. Jaegwon Kim has argued (Supervenience and mind. MIT press, Cambridge; 1993; Mind in a physical world. MIT press, Cambridge 1998) that there are no laws in psychology that contain reference to multiply realized kinds, because statements about such kinds fail to be projectible. After reviewing Kim’s argument for this claim, I show how his conclusion hinges on a hidden assumption: that a kind can only feature in a projectible statement if it is defined by an internal physical property. This assumption, however, is false: constrained kinds can feature in projectible statements, and yet they are not defined by any set of internal physical properties. I suggest that many mental terms actually refer to constrained kinds, and give an example from motor neuroscience of a constrained kind that is multiply realizable and “projectible”: the intention to move voluntarily in a specific direction.


Laws Multiple Realizability Projectibility Constrained Kinds Motor Neuroscience 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson R. A., Buneo C. A. (2002) Internal maps in posterior parietal cortex. Annual Review of Neuroscience 25: 189–220CrossRefGoogle Scholar
  2. Belardinelli P., Ciancetta L., Staudt M., Pizzella V., Londei A., Birbaumer N., Romani G. et al (2007) Cerebro-muscular and cerebro-cerebral coherence in patients with pre-and perinatally acquired unilateral brain lesions. NeuroImage 37(4): 1301–1314CrossRefGoogle Scholar
  3. Bizzi E., Accornero N., Chapplel W., Hogan N. (1984) Posture control and trajectory formation during arm movement. Journal of Neuroscience 4: 2738–2744Google Scholar
  4. Block N. (1997) Anti-reductionism slaps back. Philosophical Perspectives 11: 107–132Google Scholar
  5. Block, N. (forthcoming). Functional reduction. In T. Hogan, M. Sabates & D. Sosa (Eds.), Supervenience in Mind. Cambridge: MIT Press. Pre-publication version. Accessed 5 Jan 2011.
  6. Boussaoud D. (2005) The premotor cortex: From attention to intention. In: Freund et al. H. J. (eds) Higher-order motor disorders: From neuroanatomy and neurobiology to clinical neurology. Oxford University Press, New YorkGoogle Scholar
  7. Boyd R. (1999) Homestasis, species, and higher taxa. In: Wilson R. A. (eds) Species: New interdisciplinary essays. MIT press, Cambridge, MA, pp 141–186Google Scholar
  8. Caminiti R., Johnson P. B., Galli C., Ferraina S., Burnod Y. (1991) Making arm movements within different parts of space: The premotor and motor cortical representation of a coordinate system for reaching visual targets. The Journal of Neuroscience 11(5): 1182–1197Google Scholar
  9. Caminiti R., Johnson P. B., Urbano A. (1980) Making arm movements within different parts of space: Dynamic aspect in the primate motor cortex. Journal of Neuroscience 10(7): 2039–2058Google Scholar
  10. Chakrabarty S., Martin J. H. (2000) Postnatal development of the motor representation in primary motor cortex. Journal of Neurophysiology 84: 2582–2594Google Scholar
  11. Dancause N. (2006) Vicarious function of remote cortex following stroke: Recent evidence from human and animal studies. Neuroscientist 12(6): 489–499CrossRefGoogle Scholar
  12. Dominguez M., Jacobs R. A. (2003) Developmental constraints aid the acquisition of binocular disparity sensitivities. Neural Computation 15(1): 161–182CrossRefGoogle Scholar
  13. Evarts, E. V. (1981). Role of motor cortex in voluntary movements in primates. In Handbook of physiology: The nervous system. Section 1, Part 2 (Vol. 2, pp. 1083–1120). Bethesda, MD: American Physiological Society.Google Scholar
  14. Freund H. J., Jeannerod M., Hallett M., Leiguarda R. (2005) Higher-order motor disorders: From neuroanatomy and neurobiology to clinical neurology. Oxford University Press, New YorkGoogle Scholar
  15. Friel K. M., Martin J. H. (2007) Bilateral activity-dependent interactions in the developing corticospinal system. The Journal of Neuroscience 27(41): 11083–11090CrossRefGoogle Scholar
  16. Fodor J. A. (1994) The elm and the expert: Mentalese and its semantics. MIT press, Cambridge, MAGoogle Scholar
  17. Fodor J.A. (1997) Special sciences: Still autonomous after all these years. Philosophical perspectives 11: 149–163Google Scholar
  18. Gazzaniga M. (1998) The new cognitive neurosciences. MIT press, Cambridge, MAGoogle Scholar
  19. Georgopoulos A. P. (2002) Cognitive motor control: Spatial and temporal aspects. Current Opinion in Neurobiology 12: 678–683CrossRefGoogle Scholar
  20. Georgopoulos A. P., Caminiti R., Kalaska J. F., Massey J. T. (1983) Spatial coding of movement: A hypothesis concerning the coding of movement direction by motor cortical populations. Experimental Brain Research 7(supp): 327–336CrossRefGoogle Scholar
  21. Georgopoulos A. P., Kalaska J. F., Caminiti R., Massey J. T. (1982) On the relations between the direction of two-dimensional arms movements and cell discharge in primate motor cortex. Journal of Neuroscience 2: 1527–1537Google Scholar
  22. Georgopoulos A. P., Kalaska J. F., Massey J. T. (1981) Spatial trajectories and reaction times of aimed movements: Effects of practice, uncertainty, and change in target location. Journal of Neurophysiology 46: 725–743Google Scholar
  23. Georgopoulos A. P., Kettner R. E., Schwartz A. B. (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space: II. coding of the direction of movement by a neuronal population. Journal of Neuroscience 8: 2928–2937Google Scholar
  24. Georgopoulos A. P., Schwartz A. B., Kettner R. E. (1986) Neuronal population coding of movement direction. Science 233: 1416–1419CrossRefGoogle Scholar
  25. Gillett C. (2002) The dimension of realization: A critique of the standard view. Analysis 62(4): 316–323CrossRefGoogle Scholar
  26. Gillett C. (2003). The metaphysics of realization, multiple realizability, and the special sciences. The Journal of Philosophy 100(11):591–603.Google Scholar
  27. Gould H. J., Cusick C. G., Pons T. P., Kaas J. H. (1986) The relationship of corpus callosum connections to electrical stimulation maps of motor, supplementary motor, and the frontal eye fields in own monkeys. Journal of Comparative Neurology 247: 297–325CrossRefGoogle Scholar
  28. Grush R. (2004) The emulation theory of representation: Motor control, imagery, and perception. The Behavioral and Brain Sciences 27(3): 377–396Google Scholar
  29. Houk J. C., Keifer J., Barto A. G. (1993) Distributed motor commands in the limb premotor network. Trends in Neuroscience 16: 27–33CrossRefGoogle Scholar
  30. Jackson F., Pettit P. (1990) Program explanation: A general perspective. Analysis 50: 107–117CrossRefGoogle Scholar
  31. Kaas J. H. (2004) Evolution of somatosensory and motor cortex in primates. The Anatomical Record, Part A 281A: 1148–1156CrossRefGoogle Scholar
  32. Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2000). Principles of neural science (Chaps. 33–43 specifically). Englewood Cliffs, New Jersey: Prentice Hall.Google Scholar
  33. Kim J. (1993) Supervenience and mind. MIT press, Cambridge, MACrossRefGoogle Scholar
  34. Kim J. (1998) Mind in a physical world. MIT press, Cambridge, MAGoogle Scholar
  35. Knudsen E. I. (2004) Sensitive periods in the development of the brain and behavior. Journal of Cognitive Neuroscience 16(8): 1412–1425CrossRefGoogle Scholar
  36. List A., Landua A. (2006) Attention and intention, decoded!. The Journal of Neuroscience 26(26): 6907–6908CrossRefGoogle Scholar
  37. Ljubisavljevic, M. (2006). Transcranial magnetic stimulation and the motor learning-associated cortical plasticity. Experimental Brain Research, 173(2), 215–222. doi: 10.1007/s00221-006-0538-z.
  38. Martin J. H. (2005) The corticospinal system: From development to motor control. Neuroscientist 11(2): 161–173CrossRefGoogle Scholar
  39. Millikan R. G. (1999) Historical kinds and the special sciences. Philosophical Studies 95: 45–65CrossRefGoogle Scholar
  40. Morgan J. L., Schubert T., Wong R. O. (2008) Developmental patterning of glutamatergic synapses onto retinal ganglion cells. Neural Development 26(3): 8CrossRefGoogle Scholar
  41. Nitsche, M. A., Roth, A., Kuo, M., Fischer, A. K., Liebetanz, D., Lang, N., Tergau, F., et al. (2007). Timing-dependent modulation of associative plasticity by general network excitability in the human motor cortex. Journal of Neuroscience, 27(14), 3807–3812. doi: 10.1523/JNEUROSCI.5348-06.2007.Google Scholar
  42. Pettit P. (1996) Functional explanation and virtual selection. British Journal for the Philosophy of Science 47: 291–302CrossRefGoogle Scholar
  43. Quiroga R. Q., Snyder L. H., Batista A. P., Cui H., Anderson R. A. (2006) Movement intention is better predicted than attention in posterior parietal cortex. The Journal of Neuroscience 26(13): 3615–3620CrossRefGoogle Scholar
  44. Richardson A. G., Overduin S. A., Valero-Cabre A., Padoa-Schioppa C., Pascual-Leone A., Bizzi E., Press D. Z. (2006) Disruption of primary motor cortex before learning impairs memory of movement dynamics. The Journal of Neuroscience 26(48): 12466–12470CrossRefGoogle Scholar
  45. Sakata S., Komatsu Y., Yamamori T. (2004) Local design principles of mammalian cortical networks. Neuroscience Research 51(3): 309–315CrossRefGoogle Scholar
  46. Salinas, E., & Abbott, L. F. (1994). Vector reconstruction from firing rates. Journal of Computational Neuroscience, 1(1–2), 89–107. doi: 10.1007/BF00962720.
  47. Schiber M. H. (2001) Constraints of somatotopic organization in the primary motor cortex. Journal of Neurophysiology 86(5): 2125–2143Google Scholar
  48. Shapiro L. (2000) Multiple realizations. The Journal of Philosophy 97(12): 635–654CrossRefGoogle Scholar
  49. Shapiro, L. (2002). Neural plasticity and multiple realizability. In Presentation given at the Society for Philosophy and Psychology, Edmonton, 2002.
  50. Shapiro L. (2004) The mind incarnate. MIT press, Cambridge, MAGoogle Scholar
  51. Simpson H. D., Mortimer D., Goodhill G. J. (2009) Theoretical models of neural circuit development. Current Topics in Developmental Biology 87: 1–51CrossRefGoogle Scholar
  52. Song S., Abbott L.F. (2001) Cortical development and remapping through spike timing-dependent plasticity. Neuron 25(2): 339–350CrossRefGoogle Scholar
  53. Tanaka S., Miyashita M. (2009) Constraint on the number of synaptic inputs to a visual cortical neuron controls receptive field formation. Neural Computation 21(9): 2554–2580CrossRefGoogle Scholar
  54. Ting L. H. (2007) Dimensional reduction in sensorimotor systems: A framework for understanding muscle coordination of posture. Progress in Brain Research 165: 299–321CrossRefGoogle Scholar
  55. Towl, B. N. (2010). Spurious causal kinds: A problem for the causal-power conception of kinds. Philosophia, 38, 217.Google Scholar
  56. Ward N. S. (2004) Functional reorganization of the cerebral motor system after stroke. Current Opinion in Neurobiology 17(6): 725–730CrossRefGoogle Scholar
  57. Ward N. S. (2006) The neural substrates of motor recovery after focal damage to the central nervous system. Archives of Physical Medical Rehabilitation 87(12 suppl 2): S30–S35Google Scholar
  58. Westermann G., Mareschal D., Johnson M. H., Sirois S., Spratling M. W., Thomas M. S. (2007) Neuroconstructivism. Developmental Science 10(1): 75–83CrossRefGoogle Scholar
  59. Wilson R. A. (1992) Individualism, causal powers, and explanation. Philosophical Studies 68: 103–139CrossRefGoogle Scholar
  60. Wilson R. A. (1999) Realism, essence, and kind: Resuscitating species essentialism?. In: Wilson R. A. (eds) Species. MIT press, Cambridge, MA, pp 187–208Google Scholar
  61. Witmer G. (2003) Multiple realizability and psychological laws. In: Walter S., Heckmann H.-D. (eds) Physicalism and mental causation: The metaphysics of mind and action. Imprint Academic, Thorverton, UKGoogle Scholar
  62. Wu C. H.-W., Bichot N. P., Kaas J. H. (2000) Converging evidence from microstimulation, architecture, and connections for multiple motor areas in the frontal and cingulate cortex of prosimian primates. Journal of Comparative Neurology 423: 140–177CrossRefGoogle Scholar
  63. Yablo S. (1997) Wide causation. Nous 31: 251–281CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Harvard UniversityBostonUSA

Personalised recommendations