Brotherston, J., & Simpson, A. (2007). Complete sequent calculi for induction and infinite descent. In Proceedings of the 22nd annual IEEE symposium on logic in computer science (LICS), (pp. 51–62). Los Alamitos: IEEE Press.
Dummett, M. (1978). The justification of deduction (1973). In Truth and Other Enigmas. London: Duckworth.
Hallnäs L. (1991) Partial inductive definitions. Theoretical Computer Science 87: 115–142
Article
Google Scholar
Hallnäs L. (2006) On the proof-theoretic foundation of general definition theory. Synthese 148: 589–602
Article
Google Scholar
Hallnäs, L., & Schroeder-Heister, P. (1990/91). A proof-theoretic approach to logic programming: I. Clauses as rules. II. Programs as definitions. Journal of Logic and Computation, 1, 261–283, 635–660.
Google Scholar
Hallnäs, L., & Schroeder-Heister, P. (2012). A survey of definitional reflection (in preparation).
Kreuger, P. (1994). Axioms in definitional calculi. In R. Dychhoff (Ed.), Extensions of logic programming. 4th international workshop, ELP’93 (St. Andrews,U.K., March/April 1993). Proceedings (Lecture Notes in Computer Science) (Vol. 798, pp. 196–205). Berlin: Springer.
Lorenzen P. (1950) Konstruktive Begründung der Mathematik. Mathematische Zeitschrift 53: 162–202
Article
Google Scholar
Lorenzen, P. (1955). Einführung in die operative Logik und Mathematik (2nd Edn. 1969). Berlin: Springer.
Orevkov, V. P. (1982). Lower bounds for increasing complexity of derivations after cut elimination (Transl., russ. orig. 1979). Journal of Soviet Mathematics, 20, 2337–2350.
Google Scholar
Post E. L. (1921) Introduction to a general theory of elementary propositions. American Journal of Mathematics 43: 163–185
Article
Google Scholar
Post E. L. (1943) Formal reductions of the general combinatorial decision problem. American Journal of Mathematics 65: 197–215
Article
Google Scholar
Prawitz, D. (1965). Natural Deduction: A Proof-Theoretical Study. Almqvist & Wiksell: Stockholm (Reprinted Mineola NY: Dover Publ., 2006).
Prawitz, D. (1973). Towards a foundation of a general proof theory. In P. Suppes et al. (Eds.), Logic, methodology and philosophy of science IV (pp. 225–250). Amsterdam: North-Holland
Prawitz, D. (1979). Proofs and the meaning and completeness of the logical constants. In J. Hintikka et al. (Eds.), Essays on mathematical and philosophical logic (pp. 25–40). Dordrecht: Kluwer
Schroeder-Heister P. (1984) A natural extension of natural deduction. Journal of Symbolic Logic 49: 1284–1300
Article
Google Scholar
Schroeder-Heister P. (1991) Structural frameworks, substructural logics, and the role of elimination inferences. In: Huet G., Plotkin G. (eds) Logical frameworks. Cambridge University Press, New York, pp 385–403
Chapter
Google Scholar
Schroeder-Heister, P. (1992). Cut elimination in logics with definitional reflection. In D. Pearce & H. Wansing (Eds.), Nonclassical logics and information processing: International workshop, Berlin, November 1990, Proceedings (Lecture Notes in Computer Science) (Vol. 619, pp. 146–171). Berlin: Springer.
Schroeder-Heister, P. (2004). On the notion of assumption in logical systems. In R. Bluhm & C. Nimtz (Eds.), Selected papers contributed to the sections of GAP5, fifth international congress of the Society for Analytical Philosophy, Bielefeld, 22–26 September 2003 (pp. 27–48). Mentis: Paderborn http://www.gap5.de/proceedings.
Schroeder-Heister, P. (2008). Proof-theoretic versus model-theoretic consequence. In M. Peliš (Ed.), The Logica Yearbook 2007 (pp. 187–200). Filosofia: Prague.
Schroeder-Heister P. (2009) Sequent calculi and bidirectional natural deduction: On the proper basis of proof-theoretic semantics. In: Peliš M. (eds) The Logica Yearbook 2008. College Publications, London
Google Scholar
Schroeder-Heister, P. (2011a). Generalized elimination inferences, higher-level rules, and the implications-as-rules interpretation of the sequent calculus. In E. H. Haeusler, L. C. Pereira, & V. de Paiva (Eds.), Advances in natural deduction.
Schroeder-Heister, P. (2011b). Implications-as-rules vs. implications-as-links: An alternative implication-left schema for the sequent calculus. Journal of Philosophical Logic, 40 95–101.
Google Scholar
Schroeder-Heister, P. (2011c). Proof-theoretic semantics. In Ed. Zalta (Ed.), Stanford Encyclopedia of Philosophy. Stanford: Stanford University. http://plato.stanford.edu.
Smullyan, R. (1961). Theory of formal systems. Annals of mathematics studies 47. Princeton: Princeton University Press.
Statman R. (1979) Lower bounds on Herbrand’s theorem. Proceedings of the American Mathematical Society 75: 104–107
Google Scholar