Skip to main content
Log in

Does the deduction theorem fail for modal logic?

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

Various sources in the literature claim that the deduction theorem does not hold for normal modal or epistemic logic, whereas others present versions of the deduction theorem for several normal modal systems. It is shown here that the apparent problem arises from an objectionable notion of derivability from assumptions in an axiomatic system. When a traditional Hilbert-type system of axiomatic logic is generalized into a system for derivations from assumptions, the necessitation rule has to be modified in a way that restricts its use to cases in which the premiss does not depend on assumptions. This restriction is entirely analogous to the restriction of the rule of universal generalization of first-order logic. A necessitation rule with this restriction permits a proof of the deduction theorem in its usual formulation. Other suggestions presented in the literature to deal with the problem are reviewed, and the present solution is argued to be preferable to the other alternatives. A contraction- and cut-free sequent calculus equivalent to the Hilbert system for basic modal logic shows the standard failure argument untenable by proving the underivability of \({\square\,A}\) from A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avron A. (1991) Simple consequence relations. Information and Computation 92: 105–139

    Article  Google Scholar 

  • Barcan R. (1946) The deduction theorem in a functional calculus of first order based on strict implication. The Journal of Symbolic Logic 11: 115–118

    Article  Google Scholar 

  • Barcan Marcus R. (1953) Strict implication, deducibility and the deduction theorem. The Journal of Symbolic Logic 18: 234–236

    Article  Google Scholar 

  • Basin D., Matthews S., Viganò L. (1998) Natural deduction for non-classical logics. Studia Logica 60: 119–160

    Article  Google Scholar 

  • Chagrov A., Zakharyaschev M. (1997) Modal logic. Clarendon Press, Oxford

    Google Scholar 

  • Chellas B. (1980) Modal logic: An introduction. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Fagin R., Halpern J., Moses Y., Vardi M. (1995) Reasoning about knowledge. MIT Press, Cambridge

    Google Scholar 

  • Fagin R., Halpern J., Vardi M. (1992) What is an inference rule?. The Journal of Symbolic Logic 57: 1018–1045

    Article  Google Scholar 

  • Feys R. (1965) Modal logics. In: Dopp J. (ed) Collection de Logique Mathématique, Série B, IV. E. Nauwelaerts Éditeur, Paris

    Google Scholar 

  • Fitting M. (2007) Modal proof theory. In: Blackburn P., van Benthem J., Wolter F. (eds) Handbook of modal logic. Elsevier, Amsterdam, pp 85–138

    Chapter  Google Scholar 

  • Ganguli S., Nerode A. (2004) Effective completeness theorems for modal logic. Annals of Pure and Applied Logic 128: 141–195

    Article  Google Scholar 

  • Gentzen, G. (1934–1935). Untersuchungen über das logische Schliessen [Investigations into logical deduction]. Mathematische Zeitschrift, 39, 176–210, 405–431. Translated in Gentzen, G. (1969). The collected papers of Gerhard Gentzen (pp. 68–131) (M. Szabo, Ed.). North-Holland.

  • Goldblatt R. (1992) Logics of time and computation (2nd ed.). CSLI Publications, Stanford

    Google Scholar 

  • Herbrand, J. (1930). Recherches sur la theorie de la demonstration. Ph.D. thesis, University of Paris. English translation in W. Goldfarb (Ed.). (1971). Jacques Herbrand: Logical writings. Harvard University Press.

  • Hilbert D. (1923) Die logischen Grundlagen der Mathematik. Mathematische Annalen 88: 151–165

    Article  Google Scholar 

  • Hilbert D., Bernays P. (1934) Grundlagen der Mathematik I. Springer, Berlin

    Google Scholar 

  • Hughes, G., & Cresswell, M. (1968). An introduction to modal logic, Methuen and Co., London.

    Google Scholar 

  • Hughes G., Cresswell M. (1996) A new introduction to modal logic. Routledge, London

    Book  Google Scholar 

  • Kleene S. (1952) Introduction to metamathematics. Van Nostrand, New York

    Google Scholar 

  • Kripke S. (1959) A completeness theorem in modal logic. The Journal of Symbolic Logic 24: 1–14

    Article  Google Scholar 

  • Lemmon W. (1957) New foundations for Lewis modal systems. The Journal of Symbolic Logic 22: 176–186

    Article  Google Scholar 

  • Lesniewski S. (1929) Grundzüge eines neuen System der Grundlagen der Mathematik. Fundamenta Mathematicae 14: 1–81

    Google Scholar 

  • Lewis C., Langford C. (1932) Symbolic logic. The Century Co, New York

    Google Scholar 

  • Mints, G. (1992). Lewis’ systems and system T (1965–1973). In Selected papers in proof theory (pp. 221–294). Bibliopolis North-Holland (Russian original 1974).

  • Montague R., Henkin L. (1956) On the definition of formal deduction. The Journal of Symbolic Logic 21: 129–136

    Article  Google Scholar 

  • Negri S. (2005) Proof analysis in modal logic. Journal of Philosophical Logic 34: 507–544

    Article  Google Scholar 

  • Negri S. (2009) Kripke completeness revisited. In: Primiero G., Rahman S. (eds) Acts of knowledge: History, philosophy and logic. College Publications, London, pp 233–266

    Google Scholar 

  • Negri S., von Plato J. (2001) Structural proof theory. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Porte, J. (1982). Fifty years of deduction theorems. In J. Stern (Ed.), Proceedings of the Herbrand symposium, Logic Colloquium ’81 (pp. 243–250). North-Holland.

  • Satre T. (1972) Natural deduction rules for modal logic. Notre Dame Journal of Formal Logic 13: 461–475

    Article  Google Scholar 

  • Smorynski, C. (1984). Modal logic and self-reference. In D. Gabbay, & F. Guenthner (Eds.), Handbook of philosophical logic (Vol. II, pp. 441–495). Reidel. Reprinted in Handbook of philosophical logic (Vol. 11). Kluwer (2002).

  • Sundholm, G. (1983). Systems of deduction. In D. Gabbay & F. Guenthner (Eds.), Handbook of philosophical logic. (Vol. I, pp. 133–188). Dordrecht: Reidel.

  • Sundholm G. (2002) Varieties of consequence. In: Jacquette D. (ed) A companion to philosophical logic. Blackwell, Oxford, pp 241–255

    Google Scholar 

  • Tarski, A. (1930). Über einige fundamentale Begriffe der Metamathematik [Some fundamental concepts of metamathematics], Comptes Rendus de Séances de la Société des Sciences et des Lettres de Varsovie, Classe III (Vol. 23, pp. 22–29). English translation by J. Woodger in Tarski, A. (1956). Logic, semantics, metamathematics, papers from 1923 to 1938 (pp. 30–37). Oxford: Oxford University Press.

  • Troelstra A., Schwichtenberg H. (2000) Basic proof theory (2nd ed.). Cambridge University Press, Cambridge

    Book  Google Scholar 

  • von Plato J. (2009) Gentzen’s logic. In: Gabbay D., Woods J. (eds) Handbook of the history of logic. Elsevier, Amsterdam, pp 667–721

    Google Scholar 

  • Zeman J. (1967) The deduction theorem in S4, S4.2, and S5. Notre Dame Journal of Formal Logic 8: 56–60

    Article  Google Scholar 

  • Zeman J. (1973) Modal logic: The Lewis-modal systems. Oxford University Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Negri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hakli, R., Negri, S. Does the deduction theorem fail for modal logic?. Synthese 187, 849–867 (2012). https://doi.org/10.1007/s11229-011-9905-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-011-9905-9

Keywords

Navigation