Synthese

, Volume 185, Issue 1, pp 73–88

A functional account of degrees of minimal chemical life

Article

Abstract

This paper describes and defends the view that minimal chemical life essentially involves the chemical integration of three chemical functionalities: containment, metabolism, and program (Rasmussen et al. in Protocells: bridging nonliving and living matter, 2009a). This view is illustrated and explained with the help of CMP and Rasmussen diagrams (Rasmussen et al. In: Rasmussen et al. (eds.) in Protocells: bridging nonliving and living matter, 71–100, 2009b), both of which represent the key chemical functional dependencies among containment, metabolism, and program. The CMP model of minimal chemical life gains some support from the broad view of life as open-ended evolution, which I have defended elsewhere (Bedau in The philosophy of artificial life, 1996; Bedau in Artificial Life, 4:125–140, 1998). Further support comes from the natural way the CMP model resolves the puzzle about whether life is a matter of degree.

Keywords

Life Container Metabolism Program Open-ended evolution Degrees of life 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bedau M. A. (1996) The nature of life. In: Boden M. (eds) The philosophy of artificial life. Oxford University Press, New York, pp 332–357Google Scholar
  2. Bedau M. A. (1998) Four puzzles about life. Artificial Life 4: 125–140CrossRefGoogle Scholar
  3. Bedau M. A. (2007) What is life?. In: Sarkar S., Plutynski A. (eds) A companion to the philosophy of biology. Blackwell, New York, pp 455–471CrossRefGoogle Scholar
  4. Bedau, M. A., Cleland, C. E. (eds) (2010) The nature of life: Classical and contemporary perspectives from philosophy and science. Cambridge University Press, CambridgeGoogle Scholar
  5. Benner S. A., Ricardo A., Carrigan M. A. (2004) Is there a common chemical model for life in the universe?. Current Opinion in Chemical Biology 8: 672–689CrossRefGoogle Scholar
  6. Cairns-Smith A. G. (1985) Seven clues to the origin of life. Cambridge University Press, CambridgeGoogle Scholar
  7. Deamer D. (2005) A giant step towards artificial life?. Trends in Biotechnology 23: 336–338CrossRefGoogle Scholar
  8. Farmer D., Belin A. (1992) Artificial life: The coming evolution. In: Langton C., Taylor C., Farmer J. D., Rasmussen S. (eds) Artificial life II. Addison Wesley, Redwood City, CA, pp 815–840Google Scholar
  9. Gánti T. (2003) The principles of life, with commentary by James Griesemer and Eörs Szathmáry. Oxford University Press, OxfordGoogle Scholar
  10. Joyce G. F. (1994) Forward. In: Deamer D. W., Fleischaker G. R. (eds) Origins of life: The central concepts. Jones and Bartlett, Boston, pp xi–xiiGoogle Scholar
  11. Koshland D. E. Jr. (2002) The seven pillars of life. Science 295: 2215–2216CrossRefGoogle Scholar
  12. Langton C.G. (1989) Artificial life. In: Langton C. G. (eds) Artificial life (Santa Fe Institute studies in the sciences of complexity, proceedings vol. IV). Redwood City CA, Addison-Wesley, pp 1–47Google Scholar
  13. Luisi P. L. (1998) About various definitions of life. Origins of Life and Evolution of the Bioisphere 28: 613–622CrossRefGoogle Scholar
  14. Luisi P. L. (2006) The emergence of life: From chemical origins to synthetic biology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  15. Maynard Smith J. (1975) The theory of evolution (3rd ed.). Penguin, New YorkGoogle Scholar
  16. Mayr E. (1982) The growth of biological thought. Harvard University Press, CambridgeGoogle Scholar
  17. Mayr E. (1997) This is biology: The science of the living world. Harvard University Press, CambridgeGoogle Scholar
  18. McCaskill J. S. (2009) Evolutionary microfluidic complementation toward artificial cells. In: Rasmussen S., Bedau M. A., Chen L., Deamer D., Krakauer D. C., Packard N. H., Stadler P. F. (eds) Protocells: Bridging nonliving and living matter. MIT Press, Cambridge, pp 253–294Google Scholar
  19. National Research Council of the National Academies (2007). Introduction to the limits of organic life in planetary systems. The National Academies Press. Available at http://www.nap.edu/catalog.php?record_id=11919. Accessed September 2009.
  20. Rasmussen S., Bedau M. A., Chen L., Deamer D., Krakauer D. C., Packard N. H., Stadler P. F. (2009a) Protocells: Bridging nonliving and living matter. MIT Press, CambridgeGoogle Scholar
  21. Rasmussen S., Bedau M. A., McCaskill J. M., Packard N. H. (2009b) Roadmap to protocells. In: Rasmussen S., Bedau M. A., Chen L., Deamer D., Krakauer D. C., Packard N. H., Stadler P. F. (eds) Protocells: Bridging nonliving and living matter. MIT Press, Cambridge, pp 71–100Google Scholar
  22. Rasmussen S., Chen L., Nilsson M., Shigeaki A. (2003) Bridging nonliving and living matter. Artificial Life 9: 269–316CrossRefGoogle Scholar
  23. Ray T.S. (1992) An approach to the synthesis of life. In: Langton C.G., Taylor C., Farmer J.D., Rasmussen S. (eds) Artificial life II (Santa Fe Institute studies in the sciences of complexity, proceedings vol. X). Addison-Wesley, Redwood City CA, pp 371–408Google Scholar
  24. Ruiz-Mirazo K., Peretó J., Moreno A. (2004) A universal definition of life: Autonomy and open-ended evolution. Origins of Life and Evolution of the Biosphere 34: 323–346CrossRefGoogle Scholar
  25. Sagre D., Ben-Eli D., Lancet D. (2000) Compositional genomes: Prebiotic information transfer in mutually catalytic noncovalent assemblies. Proceedings of the National Academy of Sciences USA 97: 4112–4117CrossRefGoogle Scholar
  26. Sterelny K. (1995) Understanding life: Recent work in philosophy of biology. British Journal of the Philosophy of Science 46: 115–183CrossRefGoogle Scholar
  27. Szostak J. W., Bartel D. P., Luisi P. L. (2001) Synthesizing life. Nature 409: 387–390CrossRefGoogle Scholar
  28. Taylor C. (1992) “Fleshing out” artificial life II. In: Langton C., Taylor C., Farmer J. D., Rasmussen S. (eds) Artificial life II. Addison Wesley, Redwood City, CA, pp 25–38Google Scholar
  29. Wimsatt W. C. (1987) False models as means to truer theories. In: Niteckiand M., Hoffman A. (eds) Neutral modes in biology. Oxford University Press, Oxford, pp 23–55Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Reed CollegePortlandUSA
  2. 2.European School of Molecular MedicineMilanItaly

Personalised recommendations