Synthese

, Volume 187, Issue 2, pp 661–672 | Cite as

On some putative graph-theoretic counterexamples to the Principle of the Identity of Indiscernibles

Article

Abstract

Recently, several authors have claimed to have found graph-theoretic counterexamples to the Principle of the Identity of Indiscernibles (PII). In this paper, I argue that their counterexamples presuppose a certain view of what unlabeled graphs are, and that this view is optional at best.

Keywords

Identity of indiscernibles Graphtheory Structuralism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Black M. (1952) The identity of indiscernibles. Mind 61: 153–164CrossRefGoogle Scholar
  2. Buhrman H., Li M., Tromp J., Vitànyi P. (1999) Kolmogorov random graphs and the incompressability method. SIAM Journal on Computing 29: 590–599CrossRefGoogle Scholar
  3. Burgess J. (1999) Review of Shapiro (1997) Philosophy of mathematics: Structure and ontology. Notre Dame Journal of Formal Logic 40: 283–291CrossRefGoogle Scholar
  4. Button T. (2006) Realistic structuralism’s identity crisis: A hybrid solution. Analysis 66: 216–222CrossRefGoogle Scholar
  5. Chartrand G., Lesniak L. (2004) Graphs and digraphs (4th ed.). CRC Press, LondonGoogle Scholar
  6. French S., Redhead M. (1988) Quantum physics and the identity of indiscernibles. British Journal for the Philosophy of Science 39: 233–246CrossRefGoogle Scholar
  7. Fulling S. A., Borosh I., da Conturbia A. (1998) Cataloguing general graphs by point and line spectra. Computer Physics Communications 115: 93–112CrossRefGoogle Scholar
  8. Hawley K. (2006) Weak discernibility. Analysis 66: 303–315Google Scholar
  9. Hawley K. (2009) Identity and indiscernibility. Mind 118: 101–119CrossRefGoogle Scholar
  10. Janson, S. (1994). Orthogonal decompositions and functional limit theorems for random graph statistics. Memoirs of the American Mathematical Society, Vol. 111. Providence, RI: American Mathematical Society.Google Scholar
  11. Keränen J. (2001) The identity problem for realist structuralism. Philosophia Mathematica 9: 308–390CrossRefGoogle Scholar
  12. Ladyman J. (2005) Mathematical structuralism and the identity of indiscernibles. Analysis 64: 218–221CrossRefGoogle Scholar
  13. Ladyman J. (2007) On the identity and diversity of objects in a structure. Proceedings of the Aristotelian Society, Supplementary Volume LXXXI: 23–43CrossRefGoogle Scholar
  14. Leitgeb H., Ladyman J. (2008) Criteria of identity and structuralist ontology. Philosophia Mathematica 16: 388–396CrossRefGoogle Scholar
  15. Lowe E. J. (1999) Objects and criteria of identity. In: Hale B., Wright C. (eds) A companion to the philosophy of language. Blackwell, OxfordGoogle Scholar
  16. McDiarmid C. (2008) Random graphs on surfaces. Journal of Combinatorial Theory Series B 98: 778–797CrossRefGoogle Scholar
  17. Muller F. A., Saunders S. W. (2008) Discerning fermions. British Journal for the Philosophy of Science 59: 499–548CrossRefGoogle Scholar
  18. Parsons C. (2004) Structuralism and metaphysics. Philosophical Quarterly 54: 56–77CrossRefGoogle Scholar
  19. Quine W. V. O. (1976) Grades of discriminability. Journal of Philosophy 73: 113–116CrossRefGoogle Scholar
  20. Resnik M. (1997) Mathematics as a science of patterns. Clarendon Press, OxfordGoogle Scholar
  21. Robinson R. W., Walsh T. R. (1993) Inversion of cycle index sum relations for 2- and 3- connected graphs. Journal of Combinatorial Theory, Series B 57: 289–308CrossRefGoogle Scholar
  22. Saunders S. (2003a) Indiscernibles, general covariance, and other symmetries. In: Ashtekar A., Howard D., Renn J., Sarkar S., Shimony A. (eds) Revisiting the foundations of relativistic physics: Festschrift in honour of John Stachel. Kluwer, DordrechtGoogle Scholar
  23. Saunders S. (2003b) Physics and Leibniz’s principles. In: Brading K., Castellani E. (eds) Symmetries in physics: Philosophical reflections. Cambridge University Press, CambridgeGoogle Scholar
  24. Saunders S. (2006) Are quantum particles objects?. Analysis 66: 52–63CrossRefGoogle Scholar
  25. Shapiro S. (1997) Philosophy of mathematics: Structure and ontology. Oxford University Press, OxfordGoogle Scholar
  26. Shapiro S. (2008) Identity, indiscernibility, and ante rem structuralism: The tale of i and −i. Philosophia Mathematica 16: 285–309CrossRefGoogle Scholar
  27. Strawson P. F. (1959) Individuals. Methuen, LondonCrossRefGoogle Scholar
  28. Tutte W. T. (1984) Graph Theory. Addison-Wesley, Menlo Park, CA Current edition published by Cambridge University PressGoogle Scholar
  29. van Fraassen B. (2007) Structuralism(s) about Science: Some common problems. Proceedings of the Aristotelian Society, Supplementary Volume LXXXI: 45–61CrossRefGoogle Scholar
  30. West D. B. (2001) Introduction to graph theory (2nd ed.). Prentice Hall, Upper Saddle River, NJGoogle Scholar
  31. Wiggins D. (2001) Sameness and substance renewed. Cambridge University Press, CambridgeCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Visual Studies & Department of PhilosophyLingnan UniversityHong KongHong Kong SAR

Personalised recommendations