Information theory, evolutionary computation, and Dembski’s “complex specified information”

Abstract

Intelligent design advocate William Dembski has introduced a measure of information called “complex specified information”, or CSI. He claims that CSI is a reliable marker of design by intelligent agents. He puts forth a “Law of Conservation of Information” which states that chance and natural laws are incapable of generating CSI. In particular, CSI cannot be generated by evolutionary computation. Dembski asserts that CSI is present in intelligent causes and in the flagellum of Escherichia coli, and concludes that neither have natural explanations. In this paper, we examine Dembski’s claims, point out significant errors in his reasoning, and conclude that there is no reason to accept his assertions.

This is a preview of subscription content, log in to check access.

References

  1. Adami C., Ofria C., Collier T.C. (2000) Evolution of biological complexity. Proceedings of the National Academy of Sciences of the United States of America 97: 4463–4468

    Article  Google Scholar 

  2. Apostolico, A., & Lonardi, S. (2000). Compression of biological sequences by greedy off-line textual substitution. In Proceedings of the IEEE data compression conference (DCC), pp. 143–152.

  3. Berlekamp E.R., Conway J.H., Guy R.K. (1982) Winning ways, for your mathematical plays. Academic Press, London

    Google Scholar 

  4. Boyer P. (2001) Religion explained. Basic Books, New York

    Google Scholar 

  5. Byl J. (1989) Self-reproduction in small cellular automata. Physica D 34: 295–299

    Article  Google Scholar 

  6. Catania A.C., Cutts D. (1963) Experimental control of superstitious responding in humans. Journal of Experimental Analysis of Behavior 6: 203–208

    Article  Google Scholar 

  7. Chaitin G. (1974) Information-theoretic limitations of formal systems. Journal of the Association for Computing Machinery 21: 403–424

    Google Scholar 

  8. Channon, A. (2001). Passing the ALife test: Activity statistics classify evolution in Geb as unbounded. In J. Kelemen & P. Sosík (Eds.), Proceedings of the 6th European conference on advances in artificial life (ECAL 2001), Vol. 2159 of Lecture notes in artificial intelligence (pp. 417–426). Berlin: Springer.

  9. Chen, X., Kwong, S., & Li, M. (1999). A compression algorithm for DNA sequences and its applications in genome comparison. In Proceedings of the 10th workshop on genome informatics, pp. 52–61.

  10. Dembski W.A. (1998) The design inference: Eliminating chance through small probabilities. Cambridge University Press, Cambridge

    Google Scholar 

  11. Dembski W.A. (1999) Intelligent design: The bridge between science & theology. InterVarsity Press, Illinois

    Google Scholar 

  12. Dembski W.A. (2002) No free lunch: Why specified complexity cannot be purchased without intelligence. Rowman & Littlefield, Ianham, MD

    Google Scholar 

  13. Dembski W.A. (2004) The design revolution: Answering the toughest questions about intelligent design. InterVarsity Press, Illinois

    Google Scholar 

  14. Dinsmore A.D., Wong D.T., Nelson P., Yodh A.G. (1998) Hard spheres in vesicles: Curvature-induced forces and particle-induced curvature. Physical Review Letters 80: 409–412

    Article  Google Scholar 

  15. Edis T. (2001) Darwin in mind: ‘Intelligent design’ meets artificial intelligence. Skeptical Inquirer 25(2): 35–39

    Google Scholar 

  16. Elsberry W., Shallit J. (2003) Eight challenges for intelligent design advocates. Reports of the NCSE 23(5–6): 23–25

    Google Scholar 

  17. Elsberry W., Shallit J. (2004) Playing games with probability: Dembski’s complex specified information. In: Young M., Edis T. (eds) Why intelligent design fails. Rutgers University Press, Piscataway, NJ, pp 121–138

    Google Scholar 

  18. Fitelson B., Stephens C., Sober E. (1999) How not to detect design—critical notice: William A. Dembski, the design inference. Philosophy of Science 66: 472–488

    Article  Google Scholar 

  19. Forrest B., Gross P.R. (2004) Creationism’s Trojan horse: The wedge of intelligent design. Oxford University Press, New York

    Google Scholar 

  20. Gajardo A., Moreira A., Goles E. (2002) Complexity of Langton’s ant. Discrete Applied Mathematics 117: 41–50

    Article  Google Scholar 

  21. Glicksman E. (1984) Free dendritic growth. Materials Science and Engineering 65: 45

    Article  Google Scholar 

  22. Göbel, F. (1979). On the number of Hamiltonian cycles in product graphs. Technical report # 289. Technische Hogeschool Twente, Netherlands.

  23. Godfrey-Smith P. (2001) Information and the argument from design. In: Pennock R.T. (eds) Intelligent design creationism and its critics. The MIT Press, Cambridge, MA, pp 577–596

    Google Scholar 

  24. Goles E., Margenstern M. (1996) Sand pile as a universal computer. International Journal of Modern Physics C 7(2): 113–122

    Article  Google Scholar 

  25. Goles E., Schulz O., Markus M. (2001) Prime number selection of cycles in a predator-prey model. Complexity 6(4): 33–38. http://www3.interscience.wiley.com/cgi-bin/fulltext?ID=84502365&PLACEBO=IE.pdf.

    Article  Google Scholar 

  26. Grumbach S., Tahi F. (1994) A new challenge for compression algorithms: Genetic sequences. Information Processing and Management 30: 875–886

    Article  Google Scholar 

  27. Heeren F. (2000) The deed is done. American Spectator 33(10): 28–29

    Google Scholar 

  28. Heltzer R.A., Vyse S.A. (1994) Intermittent consequences and problem solving: The experimental control of “superstitious” beliefs. Psychological Record 44: 155–169

    Google Scholar 

  29. Hewish A., Bell S.J., Pilkington J.D.H., Scott P.F., Collins R.A. (1968) Observation of a rapidly pulsating radio source. Nature 217: 709–713

    Article  Google Scholar 

  30. Hirvensalo M. (2001) Quantum computing. Springer, Berlin

    Google Scholar 

  31. Kahneman D., Slovic P., Tversky A. (1982) Judgment under uncertainty: Heuristics and biases. Cambridge University Press, Cambridge

    Google Scholar 

  32. Kaplan P.D., Rouke J.L., Yodh A.G., Pine D.J. (1994) Entropically driven surface phase separation in binary colloidal mixtures. Physical Review Letters 72: 582–585

    Article  Google Scholar 

  33. Kari L. (1997) DNA computing: Arrival of biological mathematics. Mathematical Intelligencer 19(2): 9–22

    Article  Google Scholar 

  34. Kessler M.A., Werner B.T. (2003) Self-organization of sorted patterned ground. Science 299: 380–383

    Article  Google Scholar 

  35. Kestenbaum D. (1998) Gentle force of entropy bridges disciplines. Science 279: 1849

    Article  Google Scholar 

  36. Keynes J.M. (1957) A treatise on probability. Macmillan, London

    Google Scholar 

  37. Kirchherr W., Li M., Vitányi P. (1997) The miraculous universal distribution. Mathematical Intelligencer 19(4): 7–15. http://www.cwi.nl/paulv/papers/mathint97.ps.

    Article  Google Scholar 

  38. Koons R.C. (2001) Remarks while introducing Dembski’s talk at the conference Design, self-organization and the integrity of creation. Calvin College, Grand Rapids, Michigan

    Google Scholar 

  39. Koza J.R. (1994) Artificial life: Spontaneous emergence of self-replicating and evolutionary self-improving computer programs. In: Langton C.G. (eds) Artificial life III.. Addison-Wesley, Redwood City, CA, pp 225–262

    Google Scholar 

  40. Kuhnert L., Agladze K.I., Krinsky V.I. (1989) Image processing using light-sensitive chemical waves. Nature 337: 244–247

    Article  Google Scholar 

  41. Lanctot, J. K., Li, M., & Yang, E. (2000). Estimating DNA sequence entropy. In Proceedings of the 11th ACM-SIAM symposium on discrete algorithms (SODA), pp. 409–418.

  42. Laplace P.S. (1952) A philosophical essay on probabilities. Dover, New York

    Google Scholar 

  43. Lenski R.E., Ofria C., Pennock R.T., Adami C. (2003) The evolutionary origin of complex features. Nature 423: 139–145

    Article  Google Scholar 

  44. Li M. (2002) Compressing DNA sequences. In: Jiang T., Xu Y., Zhang M.Q. (eds) Current topics in computational molecular biology. The MIT Press, Cambridge, MA, pp 157–171

    Google Scholar 

  45. Lipson H., Pollack J.B. (2000) Automatic design and manufacture of robotic lifeforms. Nature 406: 974–978

    Article  Google Scholar 

  46. Medawar P.B. (1984) The limits of science. Harper & Row, New York

    Google Scholar 

  47. Meyer S.C. (2000) DNA and other designs. First Things 102: 30–38

    Google Scholar 

  48. Olofsson P. (2007) Intelligent design and mathematical statistics: a troubled alliance. Biology and Philosophy 23(4): 545–553

    Article  Google Scholar 

  49. Pallen M.J., Matzke N.J. (2006) From the origin of species to the origin of bacterial flagella. Nature Reviews Microbiology 4(10): 784–790

    Article  Google Scholar 

  50. Perakh M. (2004) Unintelligent design. Prometheus, New York

    Google Scholar 

  51. Pigliucci M. (2000) Chance, necessity, and the new holy war against science. A review of W. A. Dembski’s the design inference. BioScience 50: 79–81

    Google Scholar 

  52. Pigliucci M. (2001) Design yes, intelligent no: A critique of intelligent design theory and neocreationism. Skeptical Inquirer 25(5): 34–39

    Google Scholar 

  53. Rambidi N.G., Yakovenchuk D. (2001) Chemical reaction-diffusion implementation of finding the shortest paths in a labyrinth. Physical Review E 63: 026607

    Article  Google Scholar 

  54. Ray T. (1994) Evolution, complexity, entropy, and artificial reality. Physica D 75: 239–263

    Article  Google Scholar 

  55. Ray, T. (2001). Evolution of complexity: Tissue differentiation in network Tierra. http://www.isd.atr.co.jp/ray/pubs/atrjournal/index.html.

  56. Rizzotti M. (2000) Early evolution: From the appearance of the first cell to the first modern organisms. Birkhäuser, Boston

    Google Scholar 

  57. Roche D. (2001) A bit confused: Creationism and information theory. Skeptical Inquirer 25(2): 40–42

    Google Scholar 

  58. Rothemund, P. W. K., & Winfree, E. (2000). The program-size complexity of self-assembled squares. In Proceedings of the thirty-second annual ACM symposium on theory of computing, pp. 459–468. ACM.

  59. Rudski J.M., Lischner M.I., Albert L.M. (1999) Superstitious rule generation is affected by probability and type of outcome. Psychological Record 49: 245–260

    Google Scholar 

  60. Sainsbury R.M. (1995) Paradoxes (2nd ed). Cambridge University Press, Cambridge

    Google Scholar 

  61. Schmitt A.O., Herzel H. (1997) Estimating the entropy of DNA sequences. Journal of Theoretical Biology 188: 369–377

    Article  Google Scholar 

  62. Schneider, T. D. (2001). Rebuttal to William A. Dembski’s posting. http://www.lecb.ncifcrf.gov/toms/paper/ev/dembski/rebuttal.html.

  63. Shallit J. (2002) Review of William Dembski, no free lunch. BioSystems 66: 93–99

    Article  Google Scholar 

  64. Shallit, J. (2004). Dembski’s mathematical achievements. Retrieved May 12 2004, from http://www.pandasthumb.org/pt-archives/000207.html.

  65. Shannon C. (1950) Prediction and entropy of printed English. Bell System Technical Journal 3: 50–64

    Google Scholar 

  66. Sims K. (1994) Evolving 3D morphology and behavior by competition. In: Brooks R.A., Maes P. (eds) Artificial life IV: Proceedings of the fourth international workshop on the synthesis and simulation of living systems. MIT Press, Cambridge, MA, pp 28–39

    Google Scholar 

  67. Steinbock O., Tóth A., Showalter K. (1995) Navigating complex labyrinths: Optimal paths from chemical waves. Science 267: 868–871

    Article  Google Scholar 

  68. Wein, R. (2000). What’s wrong with the design inference. http://www.metanexus.net/metanexus_online/show_article2.asp?id=2654.

  69. Wilkins J., Elsberry W. (2001) The advantages of theft over toil: The design inference and arguing from ignorance. Biology and Philosophy 16: 711–724. ftp://ftp.wehi.edu.au/pub/wilkinsftp/dembski.pdf.

    Article  Google Scholar 

  70. Yelen D.R. (1971) The acquisition and extinction of superstitious behavior. Journal of Experimental Research in Personality 5: 1–6

    Google Scholar 

  71. Young M., Edis T. (eds) (2004) Why intelligent design fails. Rutgers University Press, Piscataway, NJ

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wesley Elsberry.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Elsberry, W., Shallit, J. Information theory, evolutionary computation, and Dembski’s “complex specified information”. Synthese 178, 237–270 (2011). https://doi.org/10.1007/s11229-009-9542-8

Download citation

Keywords

  • Information theory
  • Evolutionary computation
  • Artificial life
  • Pseudomathematics
  • Complex specified information