Skip to main content

Frege’s Begriffsschrift as a lingua characteristica


In this paper I suggest an answer to the question of what Frege means when he says that his logical system, the Begriffsschrift, is like the language Leibniz sketched, a lingua characteristica, and not merely a logical calculus. According to the nineteenth century studies, Leibniz’s lingua characteristica was supposed to be a language with which the truths of science and the constitution of its concepts could be accurately expressed. I argue that this is exactly what the Begriffsschrift is: it is a language, since, unlike calculi, its sentential expressions express truths, and it is a characteristic language, since the meaning of its complex expressions depend only on the meanings of their constituents and on the way they are put together. In fact it is in itself already a science composed in accordance with the Classical Model of Science. What makes the Begriffsschrift so special is that Frege is able to accomplish these goals with using only grammatical or syncategorematic terms and so has a medium with which he can try to show analyticity of the theorems of arithmetic.

This is a preview of subscription content, access via your institution.


  • Angelelli I. (1988) Begriffsschrift und andere Aufsätze Sec. ed. Olms, Hildesheim

    Google Scholar 

  • Antonelli A., May R. (2000) Frege’s new science. Notre-Dame Journal of Formal Logic 41: 242–270

    Article  Google Scholar 

  • Boole G. (1854) An investigation of the laws of thought, on which are founded the mathematical theories of logic and probabilities. Walton and Maberley, London

    Google Scholar 

  • de Jong W.R. (1996) Gottlob Frege and the analytic-synthetic distinction within the framework of the Aristotelian model of science. Kant-studien 87: 290–324

    Article  Google Scholar 

  • Drobisch M. (1887) Logik nach ihren einfachsten Verhältnissen mit rücksicht Mathematik und Naturwissenschaften. 5th edn. Leopold Voss, Hamburg

    Google Scholar 

  • Exner, F. (1845). Über Leibnizens Universal-Wissenschaft. (In Abhandlungen der königlichen böhmischen Gesellschaft der Wissenschaften. 5. Folge, 3. Band. Prague: Borrosch & Andrè).

  • Frege G. (1879) Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Nebert, Halle (Reprinted in Angelelli (Ed.) (1988, pp. I–88))

    Google Scholar 

  • Frege, G. (1883). Ueber den Zweck der Begriffsschrift. Sitzungsberichte der Jenaischen Gesellschaft für Medizin und Naturwissenschaft für das Jahr 1882, 1–10. Jena: Verlag von G. Fischer. (Reprinted in Angelelli (Ed.) (1988, pp. 97–106)).

  • Frege G. (1884) Grundlagen der Arithmetik. Verlag von Wilhelm Koebner, Breslau

    Google Scholar 

  • Frege, G. (1903). Über die Grundlagen der Geometrie. Jahresbericht der Deutschen Mathematiker-Vereinigung, 12. Band, 319–324, 368–375.

  • Frege, G. (1906). Über die Grundlagen der Geometrie. Jahresbericht der Deutschen Mathematiker-Vereinigung, 15. Band, 293–309, 377–403, 423–430.

  • Frege, G. (1969). Nachgelassene Schriften. In H. Hermes, F. Kambartel & F. Kaulbach (Eds.). Hamburg: Felix Meiner.

  • Jäsche, G. B. (Ed.). (1800). Immanuel Kants Logik, ein Handbuch zu Vorlesungen. (Königsberg: Friedrich Nicolovius) Reprinted from Kant’s gesammelte Schriften. Herausgegeben von der königlich Preußischen Akademie der Wissenschaften Band IX, pp. 1–136, 1923, Berlin & Leipzig: Walter de Gruyter & Co.

  • Kant, I. (1787). Kritik der reinen Vernunft. Zweite Auflage. Reprinted from Kant’s gesammelte Schriften. Herausgegeben von der königlich Preußischen Akademie der Wissenschaften, Band III, 1911, Berlin: Georg Reimer.

  • Květ F.B. (1857) Leibnitz’ens Logik. Tempsky, Prague

    Google Scholar 

  • Peckhaus V. (2004) Calculus ratiocinator versus characteristica universalis? The two traditions in logic, revisited. History and Philosophy of Logic 25: 3–14

    Article  Google Scholar 

  • Schröder E. (1877) Der Operationskreis des Logikkalkuls. Teubner, Leipzig

    Google Scholar 

  • Schröder, E. (1880). Review of Frege’s Begriffsschrift. Zeitschrift für Mathematik und Physik, 25, Historisch-literarische Abtheilung, 81–94.

  • Schröder E. (1890) Vorlesungen über die Algebra der Logik. Teubner, Band I. Leipzig

    Google Scholar 

  • Sigwart C. (1873) Logik. Laupp, Band I. Tübingen

    Google Scholar 

  • Sluga H. (1987) Frege against the Booleans. Notre-Dame Journal of Formal Logic 28: 80–98

    Article  Google Scholar 

  • Tappenden J. (1997) Metatheory and mathematical practice in Frege. Philosophical Topics 25: 213–264

    Google Scholar 

  • Trendelenburg A. (1862) Logische Untersuchungen (2nd edn). S. Hirzel, Leipzig

    Google Scholar 

  • Trendelenburg, A. (1867). Ueber Leibnizens Entwurf einer allgemeinen Charakteristik. In Adolf Trendelenburg, Historische Beitrage zur Philosophie. Band III (pp. 1–31). Berlin: Bethge.

  • Ulrici H. (1870) Zur Logischen Frage. Pfeffer, Halle

    Google Scholar 

  • Van Heijenoort J. (1967) Logic as calculus and logic as language. Synthese 17: 324–330

    Article  Google Scholar 

  • Ziehen Th. (1919) Lehrbuch der Logik auf positivistischer Grundlage mit Berücksichtigung der Geschichte der Logik. A. Marcus & E. Webers Verlag, Bonn

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Tapio Korte.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Korte, T. Frege’s Begriffsschrift as a lingua characteristica . Synthese 174, 283–294 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Begriffsschrift
  • Frege
  • Leibniz
  • Lingua characteristica
  • Logic