Advertisement

Synthese

, Volume 170, Issue 3, pp 415–441 | Cite as

The good, the bad and the ugly

  • Philip Ebert
  • Stewart Shapiro
Article

Abstract

This paper discusses the neo-logicist approach to the foundations of mathematics by highlighting an issue that arises from looking at the Bad Company objection from an epistemological perspective. For the most part, our issue is independent of the details of any resolution of the Bad Company objection and, as we will show, it concerns other foundational approaches in the philosophy of mathematics. In the first two sections, we give a brief overview of the “Scottish” neo-logicist school, present a generic form of the Bad Company objection and introduce an epistemic issue connected to this general problem that will be the focus of the rest of the paper. In the third section, we present an alternative approach within philosophy of mathematics, a view that emerges from Hilbert’s Grundlagen der Geometrie (1899, Leipzig: Teubner; Foundations of geometry (trans.: Townsend, E.). La Salle, Illinois: Open Court, 1959.). We will argue that Bad Company-style worries, and our concomitant epistemic issue, also affects this conception and other foundationalist approaches. In the following sections, we then offer various ways to address our epistemic concern, arguing, in the end, that none resolves the issue. The final section offers our own resolution which, however, runs against the foundationalist spirit of the Scottish neo-logicist program.

Keywords

Abstraction principles Neo-Logicism Frege Hilbert Foundationalism Implicit definitions Basic knowledge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boolos G. (1987). The consistency of Frege’s Foundations of arithmetic. In: Thompson J.J. (eds) On being and saying: Essays for Richard Cartwright. Cambridge, Massachusetts: The MIT Press, pp 3–20, reprinted in Boolos (1998), 183–201, and Demopoulos (1995), 211–233.Google Scholar
  2. Boolos G. (1997). Is Hume’s principle analytic? In: Heck R. Jr. (eds) Language, thought, and logic. Oxford University Press, Oxford, pp 245–261, reprinted in Boolos (1998), 301–314.Google Scholar
  3. Boolos G. (1998). Logic, logic, and logic. Harvard University Press, CambridgeGoogle Scholar
  4. Coffa A. (1991). The semantic tradition from Kant to Carnap. Cambridge University Press, CambridgeGoogle Scholar
  5. Corcoran J., Frank W., Maloney M. (1974). String theory. Journal of Symbolic Logic 39: 625–637CrossRefGoogle Scholar
  6. Demopoulos W. (1995). Frege’s philosophy of mathematics. Harvard University Press, CambridgeGoogle Scholar
  7. Detlefsen M. (1986). Hilbert’s program. D. Reidel Publishing Company, DordrechtGoogle Scholar
  8. Dummett M. (1991). Frege: Philosophy of mathematics. Harvard University Press, CambridgeGoogle Scholar
  9. Dummett, M. (1998). Neo-Fregeans: In Bad Company? in Schirn (1998), 369–387.Google Scholar
  10. Ebert, P. (ms.), What foundational knowledge could not be.Google Scholar
  11. Frege G. (1976). David Hilbert. In: Gabriel G., Hermes H., Kambartel F., Thiel C. (eds) Wissenschaftlicher Briefwechsel (Chapter XV). Felix Meiner, HamburgGoogle Scholar
  12. Frege G. (1980). Philosophical and mathematical correspondence. Basil Blackwell, OxfordGoogle Scholar
  13. Hale B. (2000). Reals by abstraction. Philosophia Mathematica 3(8): 100–123; reprinted in Hale and Wright (2001), 399–420.Google Scholar
  14. Hale B., Wright C. (2001). The reason’s proper study. Oxford University Press, OxfordCrossRefGoogle Scholar
  15. Hallett M. (1990). Physicalism, reductionism and Hilbert. In: Irvine A.D. (eds) Physicalism in mathematics. Kluwer Academic Publishers, Dordrecht, pp 183–257Google Scholar
  16. Heck R. (1992). On the consistency of second-order contextual definitions. Nous 26: 491–494Google Scholar
  17. Hilbert, D. (1899). Grundlagen der Geometrie, Leipzig: Teubner. English edition: (1959). Foundations of geometry (Trans.: Townsend, E.). La Salle, Illinois: Open Court.Google Scholar
  18. Hilbert, D. (1925). Über das Unendliche. Mathematische Annalen, 95, 161–190; translated as On the infinite. van Heijenoort (1967), 369–392.Google Scholar
  19. Hilbert D. (1935). Gesammelte Abhandlungen, Dritter Band. Julius Springer, BerlinGoogle Scholar
  20. Hodes H. (1984). Logicism and the ontological commitments of arithmetic. Journal of Philosophy 81: 123–149CrossRefGoogle Scholar
  21. Linnebo Ø. (2004). Predicative fragments of Frege arithmetic. Bulletin of Symbolic Logic 10: 153–174CrossRefGoogle Scholar
  22. Pappas, G. (2005). Internalist vs. externalist conceptions of epistemic justification. In E. N. Zalta (Ed.), The Stanford Internet encyclopedia of philosophy. http://plato.stanford.edu/archives/spr2005/entries/justep-intext/
  23. Parsons, C. (1964). Frege’s theory of number. In M. Black (Ed.), Philosophy in America (pp. 180–203). Ithaca, New York: Cornell University Press; also in Parsons, C. (1983). Mathematics in philosophy (pp. 150–175). Ithaca, New York: Cornell University Press.Google Scholar
  24. Pedersen, N. (2005). Entitlement in mathematics. Ph.D. Thesis, University of St. Andrews.Google Scholar
  25. Pedersen, N. (ms), Mathematical skepticism and entitlement.Google Scholar
  26. Priest G. (1987). In contradiction: A study of the transconsistent. Martinus Nijhoff Publishers, DordrechtGoogle Scholar
  27. Pryor J. (2001). Highlights of Recent Epistemology. British Journal for the Philosophy of Science 52: 95–124CrossRefGoogle Scholar
  28. Rayo A. (2003). Success by default. Philosophia Mathematica 3(11): 305–322Google Scholar
  29. Rayo A., Uzquiano G. (eds) (2006). Absolute generality. Oxford University Press, OxfordGoogle Scholar
  30. Russell B. (1993). Introduction to mathematical philosophy. Dover, New York (first published in 1919).Google Scholar
  31. Schirn M. (eds) (1998). The philosophy of mathematics today. Oxford University Press, OxfordGoogle Scholar
  32. Shapiro S. (1987). Principles of reflection and second-order logic. Journal of Philosophical Logic 16: 309–333CrossRefGoogle Scholar
  33. Shapiro S. (1991). Foundations without foundationalism: A case for second-order logic. Oxford University Press, OxfordGoogle Scholar
  34. Shapiro S. (1997). Philosophy of mathematics: Structure and ontology. Oxford University Press, New YorkGoogle Scholar
  35. Shapiro S. (2004). The nature and limits of abstraction. Philosophical Quarterly 54: 166–174CrossRefGoogle Scholar
  36. Shapiro S. (2005). Sets and abstracts. Philosophical Studies 122: 315–332CrossRefGoogle Scholar
  37. Stein, H. (1988). Logos, logic, and Logistiké: Some philosophical remarks on the nineteenth century transformation of mathematics. In W. Aspray & P. Kitcher (Eds.), History and philosophy of modern mathematics (Vol. XI, pp. 238–259). Minneapolis, Minnesota Studies in the Philosophy of Science: University of Minnesota Press.Google Scholar
  38. Tait W. (1981). Finitism. The Journal of Philosophy 78: 524–546CrossRefGoogle Scholar
  39. Tennant N. (1987). Anti-realism and logic. Oxford University Press, OxfordGoogle Scholar
  40. Van Heijenoort J. (1967). From Frege to Gödel. Harvard University Press, CambridgeGoogle Scholar
  41. Weir A. (1998). Naïve set theory is innocent. Mind 107: 763–798CrossRefGoogle Scholar
  42. Weir A. (2003). Neo-Fregeanism: an embarrassment of riches. Notre Dame Journal of Formal Logic 44: 13–48CrossRefGoogle Scholar
  43. Wilson M. (1993). There’s a hole and a bucket, dear Leibniz. Midwest Studies in Philosophy 18: 202–241CrossRefGoogle Scholar
  44. Wright C. (1983). Frege’s conception of numbers as objects. Aberdeen University Press, AberdeenGoogle Scholar
  45. Wright C. (1997). On the philosophical significance of Frege’s theorem. In: Heck R. Jr. (eds) Language, thought, and logic. Oxford University Press, Oxford, pp 201–244; reprinted in Hale and Wright (2001), 272–306.Google Scholar
  46. Wright, C. (1998). On the harmless impredicativity of N= (Hume’s Principle). In Schirn (1998), 339–368; reprinted in Hale and Wright (2001), 229–255.Google Scholar
  47. Wright C. (2000). Neo-Fregean foundations for real analysis: Some reflections on Frege’s constraint. Notre Dame Journal of Formal Logic 41: 317–334CrossRefGoogle Scholar
  48. Wright C. (2004). Warrant for nothing (and foundations for free)? Proceedings of the Aristotelian Society Supplementary 78: 167–212CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of StirlingStirlingScotland, UK
  2. 2.ColumbusUSA

Personalised recommendations