Skip to main content

Free-energy and the brain

Abstract

If one formulates Helmholtz’s ideas about perception in terms of modern-day theories one arrives at a model of perceptual inference and learning that can explain a remarkable range of neurobiological facts. Using constructs from statistical physics it can be shown that the problems of inferring what cause our sensory inputs and learning causal regularities in the sensorium can be resolved using exactly the same principles. Furthermore, inference and learning can proceed in a biologically plausible fashion. The ensuing scheme rests on Empirical Bayes and hierarchical models of how sensory information is generated. The use of hierarchical models enables the brain to construct prior expectations in a dynamic and context-sensitive fashion. This scheme provides a principled way to understand many aspects of the brain’s organisation and responses. In this paper, we suggest that these perceptual processes are just one emergent property of systems that conform to a free-energy principle. The free-energy considered here represents a bound on the surprise inherent in any exchange with the environment, under expectations encoded by its state or configuration. A system can minimise free-energy by changing its configuration to change the way it samples the environment, or to change its expectations. These changes correspond to action and perception, respectively, and lead to an adaptive exchange with the environment that is characteristic of biological systems. This treatment implies that the system’s state and structure encode an implicit and probabilistic model of the environment. We will look at models entailed by the brain and how minimisation of free-energy can explain its dynamics and structure.

References

  • Andersen R.A. (1989) Visual and eye movement factions of the posterior parietal cortex. Annual Review of Neuroscience 12: 377–405

    Article  Google Scholar 

  • Angelucci A., Levitt J.B., Walton E.J., Hupe J.M., Bullier J., Lund J.S. (2002a) Circuits for local and global signal integration in primary visual cortex. Journal of Neuroscience 22: 8633–8646

    Google Scholar 

  • Angelucci A., Levitt J.B., Lund J.S. (2002b) Anatomical origins of the classical receptive field and modulatory surround field of single neurons in macaque visual cortical area V1. Progress in Brain Research 136: 373–388

    Google Scholar 

  • Ashby W.R. (1947) Principles of the self-organising dynamic system. Journal of General Physiology 37: 125–128

    Google Scholar 

  • Atick J.J., Redlich A.N. (1990) Towards a theory of early visual processing. Neural Computation 2:308–320

    Google Scholar 

  • Ballard D.H., Hinton G.E., Sejnowski T.J. (1983) Parallel visual computation. Nature 306: 21–26

    Article  Google Scholar 

  • Barlow H.B. (1961) Possible principles underlying the transformation of sensory messages. In: Rosenblith W.A. (eds). Sensory communication. MIT press, Cambridge, MA

    Google Scholar 

  • Bell A.J., Sejnowski T.J. (1995) An information maximisation approach to blind separation and blind de-convolution. Neural Computation 7: 1129–1159

    Google Scholar 

  • Borisyuk R., Hoppensteadt F. (2004) A theory of epineuronal memory. Neural Networks 17: 1427–1436

    Article  Google Scholar 

  • Crooks G.E. (1999) Entropy production fluctuation theorem and the non-equilibrium work relation for free-energy differences. Physical Review E 60: 2721–2726

    Article  Google Scholar 

  • Dayan P., Hinton G.E., Neal R.M. (1995) The Helmholtz machine. Neural Computation 7: 889–904

    Article  Google Scholar 

  • DeFelipe J., Alonso-Nanclares L., Arellano J.I. (2002) Microstructure of the neocortex: Comparative aspects. Journal of Neurocytology 31: 299–316

    Article  Google Scholar 

  • Dempster A.P., Laird N.M., Rubin D.B. (1977) Maximum likelihood from incomplete data via the EM algorithm. Journal of The Royal Statistical Society Series B 39: 1–38

    Google Scholar 

  • Edelman G.M. (1993) Neural Darwinism: Selection and reentrant signaling in higher brain function. Neuron 10: 115–125

    Article  Google Scholar 

  • Efron B., Morris C. (1973) Stein’s estimation rule and its competitors—an empirical Bayes approach. Journal of The American Statistical Association 68: 117–130

    Article  Google Scholar 

  • Evans D.J., Searles D.J. (2002) The fluctuation theorem. Advances in Physics 51: 1529–1585

    Article  Google Scholar 

  • Evans D.J. (2003) A non-equilibrium free-energy theorem for deterministic systems. Molecular Physics 101: 1551–1554

    Article  Google Scholar 

  • Felleman D.J., Van Essen D.C. (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1: 1–47

    Article  Google Scholar 

  • Feynman R.P. (1972). Statistical mechanics. Benjamin, Reading, MA

    Google Scholar 

  • Foldiak P. (1990). Forming sparse representations by local anti-Hebbian learning. Biological Cybernetics 64: 165–170

    Article  Google Scholar 

  • FristonK.J., Price C.J. (2001) Dynamic representations and generative models of brain function. Brain Research Bulletin 54: 275–285

    Article  Google Scholar 

  • Friston K.J. (2003) Learning and inference in the brain. Neural Networks 16: 1325–1352

    Article  Google Scholar 

  • Friston K.J. (2005) A theory of cortical responses. Philosophical Transactions of The Royal Society of London Series B-Biological Sciences 360: 815–836

    Article  Google Scholar 

  • Friston K.J. et al. (2006). Variational Bayes and the Laplace approximation. NeuroImage 34: 220–234

    Article  Google Scholar 

  • Friston, K. J. et al. (in preparation). DEM: A variational treatment of dynamic systems.

  • Haken H. (1983) Synergistics: An introduction, Non-equilibrium phase transition and self-organisation in physics, chemistry and biology (3rd ed.). Springer, Berlin

    Google Scholar 

  • Han S., He X. (2003) Modulation of neural activities by enhanced local selection in the processing of compound stimuli. Human Brain Mapping 19: 273–281

    Article  Google Scholar 

  • Harth E, Unnikrishnan K.P., Pandya A.S. (1987) The inversion of sensory processing by feedback pathways: A model of visual cognitive functions. Science 237: 184–187

    Article  Google Scholar 

  • Harville D.A. (1977) Maximum likelihood approaches to variance component estimation and to related problems. Journal of the American Statistical Association 72:320–338

    Article  Google Scholar 

  • Helmholtz., H. (1860/1962). Handbuch der physiologischen optik (Southall, J. P. C. (Ed.), English trans.), Vol. 3. New York: Dover.

  • Henson R., Shallice T., Dolan R. (2000) Neuroimaging evidence for dissociable forms of repetition priming. Science 287: 1269–1272

    Article  Google Scholar 

  • Hinton, G. E., & von Cramp, D. (1993). Keeping neural networks simple by minimising the description length of weights. In Proceedings of COLT-93 (pp. 5–13).

  • Hirsch J.A., Gilbert C.D. (1991) Synaptic physiology of horizontal connections in the cat’s visual cortex. The Journal of Neuroscience 11: 1800–1809

    Google Scholar 

  • Hochstein S., Ahissar M. (2002) View from the top: Hierarchies and reverse hierarchies in the visual system. Neuron 36: 791–804

    Article  Google Scholar 

  • Huffman K.J., Krubitzer L. (2001) Area 3a: Topographic organization and cortical connections in marmoset monkeys. Cerebral Cortex 11: 849–867

    Article  Google Scholar 

  • Hupe J.M., James A.C., Payne B.R., Lomber S.G., Girard P.P.D., Bullier J. (1998) Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 394: 784–787

    Article  Google Scholar 

  • Itti, L., & Baldi, P. (2006). Bayesian surprise attracts human attention. In Advances in neural information processing systems, Vol. 19 (NIPS*2005) (pp. 1–8). Cambridge, MA: MIT Press.

  • Jääskeläinen I.P., Ahveninen J., Bonmassar G., Dale A.M., Ilmoniemi R.J., Levänen S., Lin F.-H., May P., Melcher J., Stufflebeam S., Tiitinen H., Belliveau J.W. (2004) Human posterior auditory cortex gates novel sounds to consciousness. Proceedings of the National Academy of Sciences USA 101: 6809–6814

    Article  Google Scholar 

  • Kass R.E., Steffey D. (1989) Approximate Bayesian inference in conditionally independent hierarchical models (parametric empirical Bayes models). Journal of The American Statistical Association 407: 717–726

    Article  Google Scholar 

  • Kauffman S. (1993) Self-organisation on selection in evolution. Oxford University Press. Oxford, UK

    Google Scholar 

  • Kawato M., Hayakawa H., Inui T. (1993) A forward-inverse optics model of reciprocal connections between visual cortical areas. Network 4: 415–422

    Article  Google Scholar 

  • Kersten D., Mamassian P., Yuille A. (2004) Object perception as Bayesian inference. Annual Review of Psychology 55: 271–304

    Article  Google Scholar 

  • Kloucek P. (1998) The computational modeling of nonequilibrium thermodynamics of the martensitic transformations. Computational Mechanics 23: 239–254

    Google Scholar 

  • Körding K.P., Wolpert D.M. (2004) Bayesian integration in sensorimotor learning. Nature 427: 244–247

    Article  Google Scholar 

  • Lee T.S., Mumford D. (2003) Hierarchical Bayesian inference in the visual cortex. Journal of The Optical Society of America Optics Image Science and Vision 20: 1434–1448

    Article  Google Scholar 

  • Linsker R. (1990) Perceptual neural organisation: Some approaches based on network models and information theory. Annual Review of Neuroscience 13: 257–281

    Article  Google Scholar 

  • Locke J. (1690/1976) An essay concerning human understanding. Dent, London

    Google Scholar 

  • MacKay D.M. (1956) The epistemological problem for automata. In: Shannon C.E., McCarthy J. (eds). Automata studies. Princeton University Press, Princeton, NJ, pp. 235–251

    Google Scholar 

  • MacKay D.J.C. (1995) Free-energy minimisation algorithm for decoding and cryptoanalysis. Electronics Letters 31: 445–447

    Article  Google Scholar 

  • Maniadakis M., Trahanias P.E. (2006) Modelling brain emergent behaviours through coevolution of neural agents. Neural Networks 19(5): 705–720

    Article  Google Scholar 

  • March J.G. (1991) Exploration and exploitation in organizational learning. Organization Science 10(1): 299–316

    Google Scholar 

  • Martinez-Trujillo J.C., Treue S. (2004) Feature-based attention increases the selectivity of population responses in primate visual cortex. Current Biology 14: 744–751

    Article  Google Scholar 

  • Mesulam M.M. (1998). From sensation to cognition. Brain 121: 1013–1052

    Article  Google Scholar 

  • Morowitz H.J. (1968) Energy flow in biology (p. 68). New York, NY: Academic Press

    Google Scholar 

  • Nicolis, G., & Prigogine, I. (1977). Self-organisation in non-equilibrium systems (p. 24). New York, NY: Wiley.

  • Mumford D. (1992) On the computational architecture of the neocortex. II. The role of cortico-cortical loops. Biological Cybernetics 66: 241–251

    Article  Google Scholar 

  • Murphy P.C., Sillito A.M. (1987). Corticofugal feedback influences the generation of length tuning in the visual pathway. Nature 329: 727–729

    Article  Google Scholar 

  • Murray S.O., Kersten D., Olshausen B.A., Schrater P., Woods D.L. (2002) Shape perception reduces activity in human primary visual cortex. Proceedings of the National Academy of Sciences USA 99: 15164–15169

    Article  Google Scholar 

  • Näätänen R. (2003) Mismatch negativity: Clinical research and possible applications. International Journal of Psychophysiology 48: 179–188

    Article  Google Scholar 

  • Neal R.M., Hinton G.E. (1998) A view of the EM algorithm that justifies incremental sparse and other variants. In: Jordan M.I. (eds). Learning in graphical models. Kluwer Academic Press, Dordrecht

    Google Scholar 

  • Neisser U. (1967) Cognitive psychology. Appleton-Century-Crofts, New York

    Google Scholar 

  • Nicolis, G., & Prigogine, I. (1977). Self-organisation in non-equilibrium systems (p. 24). New York, NY: Wiley.

  • Oja E. (1989) Neural networks, principal components, and subspaces. International Journal of Neural Systems 1: 61–68

    Article  Google Scholar 

  • Olshausen B.A., Field D.J. (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381: 607–609

    Article  Google Scholar 

  • Optican L., Richmond B.J. (1987) Temporal encoding of two-dimensional patterns by single units in primate inferior cortex. II Information theoretic analysis. Journal of Neurophysiology 57: 132–146

    Google Scholar 

  • Pack C.C., Born R.T. (2001) Temporal dynamics of a neural solution to the aperture problem in visual area MT of macaque brain. Nature 409: 1040–1042

    Article  Google Scholar 

  • Phillips W.A., Singer W. (1997) In search of common foundations for cortical computation. Behavioural and Brain Sciences 20: 57–83

    Article  Google Scholar 

  • Pollen D.A. (1999) On the neural correlates of visual perception. Cerebral Cortex 9: 4–19

    Article  Google Scholar 

  • Poggio T., Torre V., Koch C. (1985) Computational vision and regularisation theory. Nature 317: 314–319

    Article  Google Scholar 

  • Prince A., Smolensky P. (1997) Optimality: From neural networks to universal grammar. Science 275: 1604–1610

    Article  Google Scholar 

  • Rao R.P., Ballard D.H. (1998) Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive field effects. Nature Neuroscience 2: 79–87

    Article  Google Scholar 

  • Rao R.P. (2005) Bayesian inference and attentional modulation in the visual cortex. NeuroReport 16: 1843–1848

    Article  Google Scholar 

  • Rockland K.S., Pandya D.N. (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Research 179: 3–20

    Article  Google Scholar 

  • Rosier A.M., Arckens L., Orban G.A., Vandesande F. (1993) Laminar distribution of NMDA receptors in cat and monkey visual cortex visualized by [3H]-MK-801 binding. Journal of Comparative Neurology 335: 369–380

    Article  Google Scholar 

  • Sherman, S. M., & Guillery, R. W. (1998). On the actions that one nerve cell can have on another: Distinguishing “drivers” from “modulators”. Proceedings of the National Academy of Sciences USA, 95, 7121–7126.

    Google Scholar 

  • Schroeder C.E., Mehta A.D., Foxe J.J. (2001) Determinants and mechanisms of attentional modulation of neural processing. Front Bioscience 6: D672–D684

    Article  Google Scholar 

  • Simoncelli E.P., Olshausen B.A. (2001) Natural image statistics and neural representation. Annual Review of Neuroscience 24: 1193–1216

    Article  Google Scholar 

  • Stephan K.E., Kamper L., Bozkurt A., Burns G.A.P.C., Young M.P., Kötter R. (2001) Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). Philosophical Transactions of the Royal Society London B: Biological Sciences 356: 1159–1186

    Article  Google Scholar 

  • Streater R.F. (1993) The free-energy theorem. In; Araki H., Ito K.R., Kishimoto A., Ojima I. (eds). Quantum and non-commutative analysis. Kluwer Press, Dordrecht, pp. 137–147

    Google Scholar 

  • Treue S., Maunsell H.R. (1996) Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382: 539–541

    Article  Google Scholar 

  • Yu A.J., Dayan P. (2005) Uncertainty, neuromodulation and attention. Neuron 46: 681–692

    Article  Google Scholar 

  • Zeki S., Shipp S. (1988) The functional logic of cortical connections. Nature 335: 311–317

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl J. Friston.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Friston, K.J., Stephan, K.E. Free-energy and the brain. Synthese 159, 417–458 (2007). https://doi.org/10.1007/s11229-007-9237-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-007-9237-y

Keywords

  • Variational Bayes
  • Free-energy
  • Inference
  • Perception
  • Action
  • Value
  • Learning
  • Attention
  • Selection
  • Hierarchical