, 159:347 | Cite as

Why neuroscience matters to cognitive neuropsychology

  • Victoria McGeerEmail author


The broad issue in this paper is the relationship between cognitive psychology and neuroscience. That issue arises particularly sharply for cognitive neurospsychology, some of whose practitioners claim a methodological autonomy for their discipline. They hold that behavioural data from neuropsychological impairments are sufficient to justify assumptions about the underlying modular structure of human cognitive architecture, as well as to make inferences about its various components. But this claim to methodological autonomy can be challenged on both philosophical and empirical grounds. A priori considerations about (cognitive) multiple realisability challenge the thesis on philosophical grounds, and neuroscientific findings from developmental disorders substantiate that challenge empirically. The conclusion is that behavioural evidence alone is inadequate for scientific progress since appearances of modularity can be thoroughly deceptive, obscuring both the dynamic processes of neural development and the endstate network architecture of real cognitive systems.


Cognitive neuropsychology Modularity Multiple realisability Neuroconstructivism Williams syndrome (WS) Autism (ASD) Face processing 


  1. Adolphs R., Sears L., Piven J. (2001). Abnormal processing of social information from faces in autism. Journal of Cognitive Neuroscience 13(2): 232CrossRefGoogle Scholar
  2. Baron-Cohen S. (1989). The autistic child’s theory of mind: A case of specific developmental delay. Journal of Child Psychology and Psychiatry 30: 285–298CrossRefGoogle Scholar
  3. Baron-Cohen S. (1998). Modularity in developmental cognitive neuropsychology: Evidence from autism and Gilles de la Tourette syndrome. In Burack J. (ed). Handbook of mental retardation and development. Cambridge, Cambridge University Press, pp. 334–348Google Scholar
  4. Baron-Cohen S.W.S.J.T. (1997). Is there a “language of the eyes”? Evidence from normal adults, and adults with autism or Asperger syndrome. Visual Cognition 4: 311CrossRefGoogle Scholar
  5. Bellugi U., Birhle A., Jernigan T., Trauner D., Doherty S. (1990). Neuropsychological, neurological, and neuroanatomical profile of Williams syndrome. American Journal of Medical Genetics 6: 115–125CrossRefGoogle Scholar
  6. Bellugi, U., Lechtenberger, W., Jones, W., Lai, Z., St. George, M. (2000). The neurocognitive profile of Williams syndrome: A complex pattern of strengths and weaknesses. In U. Bellugi & M. St. George (Eds.), Journey from cognition to brain to gene: Perspectives from Williams syndrome. Cambridge, MA: MIT Press.Google Scholar
  7. Bellugi U., Lichtenberger L., Mills D., Galaburda A., Korenberg J.R. (1999). Bridging cognition, the brain and molecular genetics: Evidence from Williams syndrome. Trends in Neurosciences 22, 197–207CrossRefGoogle Scholar
  8. Bellugi, U., Wang P. P., & Jernigan, T. (1994). Williams syndrome: An unusual neuropsychological profile. In S. Broman & J. Grafman (Eds.), Atypcial cognitive deficits in developmental disorders: Implications for brain function. Erlbaum.Google Scholar
  9. Bishop D.V.M. (1997). Cognitive neuropsychology and developmental disorders: uncomfortable bedfellows. Quarterly Journal of Experimental Psychology 50A(4): 899–923CrossRefGoogle Scholar
  10. Block, N. (1995). The mind as the software of the brain. In Smith, E., Osherson, D. (eds). Thinking: an invitation to cognitive science. Cambridge, MA, MIT Press.Google Scholar
  11. Boucher J., Lewis V. (1992). Unfamiliar face recognition in relatively able autistic children. Journal of Child Psychology and Psychiatry 33(5): 843–859CrossRefGoogle Scholar
  12. Boucher J., Lewis V., Collis G. (2000). Familiar face and voice matching and recognition in children with autism. The Journal of Child Psychology and Psychiatry and Allied Disciplines 39(02): 171–181CrossRefGoogle Scholar
  13. Caramazza A. (1986). On drawing inferences about the structure of normal cognitive systems from an analysis of patterns of impaired performance: The case for single-patient studies. Brain and Cognition 5: 41–66CrossRefGoogle Scholar
  14. Caramazza A. (1992). Is cognitive neuropsychology possible?. Journal of Cognitive Neuroscience 4(1): 80–95CrossRefGoogle Scholar
  15. Caramazza A., Coltheart M. (2006). Cognitive neuropsychology twenty years on. Cognitive Neuropsychology 23(1): 3–12CrossRefGoogle Scholar
  16. Carey S., Diamond R. (1977). From piecemeal to configural representation of faces. Science 195, 312–314CrossRefGoogle Scholar
  17. Chung M.-S., Thompson D.M. (1995). Development of face recognition. British Journal of Psychology 86(1): 55Google Scholar
  18. Churchland P.M., Churchland P.S. (1996). Replies from the Churchlands. In: McCauley R.N. (ed). The Churchlands and their critics. Oxford, Blackwell Publishers.Google Scholar
  19. Coltheart M. (2002a). Cognitive neuropsychology. In Wixted J. (ed). Stevens’ handbook of experimental psychology (vol. 4). New York, Wiley & Sons, pp. 139–174Google Scholar
  20. Coltheart, M. (2002b). The distinction between proximal and distal causes of developmental disorders of cognition. Presented in the Seminar Series, Research School of Social Sciences, Australian National University, Canberra, Australia.Google Scholar
  21. Coltheart M. (2004). Brain imaging, connectionism, and cognitive neuropsychology. Cognitive Neuropsychology 21(1): 21–25CrossRefGoogle Scholar
  22. Coltheart M., Curtis B., Atkins P., Haller M. (1993). Models of reading aloud: Dual route and parallel-distributed processing approaches. Psychological Review 100: 589–608CrossRefGoogle Scholar
  23. Coltheart M., Jackson N.E. (1998). Defining dyslexia. Child Psychology and Psychiatry Review 3(01): 12–16CrossRefGoogle Scholar
  24. Coltheart M., Langdon R. (1998). Autism, modularity and levels of explanation in cognitive science. Mind and Language 13(1): 138–152CrossRefGoogle Scholar
  25. Dalton K., Nacewicz B., Johnstone T., Schaefer H., Gernsbacher M.A., Goldsmith H.H., Alexander A., Davidson R. (2005). Gaze fixation and the neural circuitry of face processing in autism. Nature Neuroscience 8(4): 519–526Google Scholar
  26. Davies S., Bishop D., Manstead A.S.R., Tantam D. (1994). Face perception in children with autism and Asperger’s syndrome. Journal of Child Psychology and Psychiatry 35(6): 1033–1057CrossRefGoogle Scholar
  27. Dawson G., Carver L., Meltzoff A.N., Panagiotides H., McPartland J., Webb S.J. (2002). Neural correlates of face and object recognition in young children with autism spectrum disorder, developmental delay, and typical development. Child Development 73(3): 700–717CrossRefGoogle Scholar
  28. de Hahn M. (2001). The neuropsychology of face processing during infancy and childhood. In: Nelson C.A., Luciana M. (eds). Handbook of developmental cognitive neuroscience. Cambridge, MA, MIT Press, pp. 381–398Google Scholar
  29. de Schonen S., Mathivet E., Deurelle C. (1989). A timing puzzle. Current Psychology of Cognition 9: 147–161Google Scholar
  30. Dennett D. (1987). The intentional stance. Cambridge, MA, MIT PressGoogle Scholar
  31. Deruelle C., Mancini J., Livet M.O., Casse-Perrot C., de Schonen S. (1999). Configural and local processing of faces in children with Williams Syndrome. Brain and Cognition 41(3): 276–298CrossRefGoogle Scholar
  32. Elgar K., Campbell R. (2001). Annotation: The cognitive neuroscience of face recognition: Implications for developmental disorders. Journal of Child Psychology and Psychiatry 42(6): 705–717CrossRefGoogle Scholar
  33. Ellis H.D., Ellis D.M., Fraser W., Deb S. (1994). A preliminary study of right hemisphere cognitive deficits and impaired social judgments among young people with Asperger syndrome. European Child & Adolescent Psychiatry 3(4): 255–266CrossRefGoogle Scholar
  34. Fodor J. (1983). The modularity of mind. Cambridge, MA, MIT PressGoogle Scholar
  35. Frith U., Happé F. (1994). Autism: beyond ‘theory of mind’. Cognition 50: 115–132CrossRefGoogle Scholar
  36. Gauthier I., Logothetis N.K. (2000). Is face recognition not so special after all?. Cognitive Neuropsychology 17(1): 125–142CrossRefGoogle Scholar
  37. Gerrans P. (2003a). Nativism and neuroconstructivism in the explanation of Williams syndrome. Biology and Philosophy 18(1): 41–52CrossRefGoogle Scholar
  38. Gerrans P. (2003b). Nativism, neuroconstructivism, and developmental disorder. Behavioral and Brain Sciences 25(06): 757–758CrossRefGoogle Scholar
  39. Gopnik M. (1997). Language deficits and genetic factors. Trends in Cognitive Science 1, 5–9CrossRefGoogle Scholar
  40. Grice S., Spratling M.W., Karmiloff-Smith A., Halit H., Csibra G., De Haan M., Johnson M.H. (2001). Disordered visual processing and oscillatory brain activity in autism and Williams syndrome. Neuroreport 12(12): 2697–2700CrossRefGoogle Scholar
  41. Grill-Spector K., Knouf N., Kanwisher N. (2004). The fusiform face area subserves face perception, not generic within-category identification. Nature Neuroscience 7(5), 555–562CrossRefGoogle Scholar
  42. Hadjikhani N., Joseph R., Snyder J., Chabris C., Clark J., Steele S., McGarth L., Vangel M., Aharon I., Feczko E., Harris G., Tager-Flusberg H. (2004). Activation of the fusiform gyrus when individuals with autism spectrum disorder view faces. NeuroImage 22, 1141–1150CrossRefGoogle Scholar
  43. Happé F. (1999). Autism: Cognitive style or cognitive deficit. Trends in Cognitive Science 3(6): 216–222CrossRefGoogle Scholar
  44. Harley T.A. (2004a). Does cognitive neuropsychology have a future?. Cognitive Neuropsychology 21(1): 3–16CrossRefGoogle Scholar
  45. Harley T.A. (2004b). Promises, promises. Cognitive Neuropsychology 21(1): 51–56CrossRefGoogle Scholar
  46. Haxby J.V., Hoffman E.A., Gobbini M.I. (2000). The distributed human neural system for face perception. Trends in Cognitive Sciences 4, 223–233CrossRefGoogle Scholar
  47. Hobson R.P., Ouston J., Lee A. (1988). Emotion recognition in autism: Coordinating faces and voices. Psychological Medicine 18, 911–923CrossRefGoogle Scholar
  48. Jackson, N. E., & Coltheart, M. (2001). Routes to reading success and failure: Toward an integrated cognitive psychology of atypical reading. Psychology Press.Google Scholar
  49. Johnson M.H. (2000). Functional brain development in infants: Elements of an interactive specialization framework. Child Development 71(1): 75–81CrossRefGoogle Scholar
  50. Johnson M.H., Halit H., Grice S.J., Karmiloff-Smith A. (2002). Neuroimaging of typical and atypical development: A perspective from multiple levels of analysis. Development and Psychopathology 14, 521–536CrossRefGoogle Scholar
  51. Joseph R.M., Tanaka J. (2003). Holistic and part-based recognition in children with autism. Journal of Child Psychology & Psychiatry & Allied Disciplines 44(4): 529CrossRefGoogle Scholar
  52. Kanwisher N., McDermott J., Chun M.M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience 17(11): 4302–4311Google Scholar
  53. Karmiloff-Smith A. (1992). Beyond modularity: A developmental perspective on cognitive science. Cambridge, MA, Bradford/MIT PressGoogle Scholar
  54. Karmiloff-Smith A. (1997). Crucial differences between developmental cognitive neuroscience and adult neuropsychology. Developmental Neuropsychology 13: 513–524CrossRefGoogle Scholar
  55. Karmiloff-Smith A. (1998). Development itself is the key to understanding developmental disorders. Trends in Cognitive Science 2(10): 389–398CrossRefGoogle Scholar
  56. Karmiloff-Smith A., Brown J.H., Grice S., Paterson S. (2003). Dethroning the myth: Cognitive dissociations and innate modularity in Williams syndrome. Developmental Neuropsychology 23(1/2): 227–242CrossRefGoogle Scholar
  57. Karmiloff-Smith A., Thomas M., Annaz D., Humphreys K., Ewing S., Brace N., Duuren M., Pike G., Grice S., Campbell R. (2004). Exploring the Williams syndrome face-processing debate: The importance of building developmental trajectories. Journal of Child Psychology and Psychiatry 45(7): 1258–1274CrossRefGoogle Scholar
  58. Klin A. (2000). Attributing social meaning to ambiguous visual stimuli in higher-functioning autism and Asperger syndrome: The social attribution task. The Journal of Child Psychology and Psychiatry and Allied Disciplines 41(07): 831–846CrossRefGoogle Scholar
  59. Klin A., Sparrow S.S., de Bildt A., Cicchetti D.V., Cohen D.J., Volkmar F.R. (1999). A normed study of face recognition in autism and related disorders. Journal of Autism and Developmental Disorders 29(6): 499–508CrossRefGoogle Scholar
  60. Kosslyn S.M., Van Kleeck M. (1990). Broken brains and normal minds: Why humpty dumpty needs a skeleton. In Schwartz E. (ed). Computational neuroscience. Cambridge, MA, MIT Press, pp. 390–402Google Scholar
  61. Laing E., Butterworth G., Ansari D., Gsodl M., Longhi E., Panagiotaki G., Paterson S., Karmiloff-Smith A. (2002). Atypical development of language and social communication in toddlers with Williams syndrome. Developmental Science 5(2): 233–246CrossRefGoogle Scholar
  62. Lakatos I. (1974). Falsification and the methodology of scientific research programs. In Lakatos I., Musgrave A. (eds). Criticism and the growth of knowledge. Cambridge, Cambridge University Press, pp. 91–196Google Scholar
  63. Leslie, A. (1991). The theory of mind impairment in autism: Evidence for a modular Mechanism of development? In A. Whiten (Ed.), Natural theories of mind. Oxford: Blackwell.Google Scholar
  64. Mehler J., Morton J., Jusczyk P.W. (1984). On reducing language to biology. Cognitive Neuropsychology 1, 83–116CrossRefGoogle Scholar
  65. Mervis C.B., Bertrand J. (1997). Developmental relations between cognition and language: Evidence from Williams syndrome. In: Adamson L.B., Romski M.A. (eds.) Research on communication and language disorders: Contributions to theories of language development. New York, Brookes, pp. 75–106Google Scholar
  66. Mills D.L., Alvarez T.D., St. George M., Appelbaum L.G., Bellugi U., Neville H. (2000). Electrophysiological studies of face processing in Williams syndrome. Journal of Cognitive Neuroscience, 12(1): 47–64CrossRefGoogle Scholar
  67. Morton J., Johnson M.H. (1991). CONSPEC and CONLEARN: A two-process theory of infant face recognition. Psychological Review 98(2): 164–181CrossRefGoogle Scholar
  68. Oliver A., Johnson M.H., Karmiloff-Smith A., Pennington B. (2000). Deviations in the emergence of representations: A neuroconstructivist framework for analysing developmental disorders. Developmental Science 3(1): 1–23CrossRefGoogle Scholar
  69. Osterling J., Dawson G. (1994). Early recognition of children with autism: A study of first birthday home videos. Journal of Autism and Developmental Disorders 24, 247–257CrossRefGoogle Scholar
  70. Passarotti A.M., Paul B.M., Bussiere J.R., Buxton R.B., Wong E.C., Stiles J. (2003). The development of face and location processing: An fMRI study. Developmental Science 6(1): 100–117CrossRefGoogle Scholar
  71. Pierce K., Muller R.A., Ambrose J., Allen G., Courchesne E. (2001). Face processing occurs outside the fusiform ‘face area’ in autism: Evidence from functional MRI. Brain 124(10): 2059–2073CrossRefGoogle Scholar
  72. Pinker S. (1999). Words and rules. New York/London, Basic Books/Weidenfield & NicholsonGoogle Scholar
  73. Plaut D.C. (1995). Double dissociation without modularity: Evidence from connectionist neuropsychology. Journal of Clinical and Experimental Neuropsychology 17(2): 291–321Google Scholar
  74. Price C.J., Friston K.J. (2005). Functional ontologies for cognition: The systematic definition of structure and function. Cognitive Neuropsychology 22(3): 262–275CrossRefGoogle Scholar
  75. Quartz S.R. (2003). Innateness and the brain. Biology and Philosophy 18(1): 13–40CrossRefGoogle Scholar
  76. Rae C., Karmiloff-Smith A., Lee M.A., Dixon R.M., Grant J., Blamire A.M., Thompson C.H., Styles P., Radda G.K. (1998). Brain biochemistry in Williams syndrome: Evidence for a role of the cerebellum in cognition?. Neurology 51(1): 33–40CrossRefGoogle Scholar
  77. Schultz R.T., Gautier I., Klin A., Fulbright R.K., Anderson A.W., Volkmar F., Skudlarski P., Lacadie C., Cohen D.J., Gore J.C. (2000). Abnormal ventral temporal cortical activity during face discrimination among individuals with autism and Asperger syndrome. Archives of General Psychiatry 57, 331–340CrossRefGoogle Scholar
  78. Smith N. (1999). Chomsky: Ideas and ideals. Cambridge, UK, Cambridge University PressGoogle Scholar
  79. Stone T., Davies M. (1999). Autonomous psychology and the moderate neuron doctrine. Behavioral and Brain Sciences 22(05): 849–850CrossRefGoogle Scholar
  80. Swettenham J., Baron-Cohen S., Charman T., Cox A., Baird G., Drew A., Rees L., Wheelwright S. (1998). The frequency and distribution of spontaneous attention shifts between social and nonsocial, stimuli in autistic, typically developing, and nonautistic developmentally delayed infants. Journal of Child Psychology and Psychiatry 39, 747–753CrossRefGoogle Scholar
  81. Tarr M.J., Gauthier I. (2000). FFA: A flexible fusiform area for subordinate-level visual processing automatized by expertise. Nature Neuroscience 3(8): 764–769CrossRefGoogle Scholar
  82. Temple C.M. (1997). Developmental cognitive neuropsychology. Hove, UK, Psychology PressGoogle Scholar
  83. Thomas M., Karmiloff-Smith A. (2002). Are developmental disorders like cases of adult brain damage?. Implications from connectionist modelling. Behavioral and Brain Sciences 25(06): 727–750Google Scholar
  84. Thomas M., & Karmiloff-Smith A. (2003). Residual normality: Friend or foe?. Behavioral and Brain Sciences 25(06): 772–780CrossRefGoogle Scholar
  85. Udwin O., Yule W. (1991). A cognitive and behavioral phenotype in Williams syndrome. Journal of Clinical and Experimental Neuropsychology 13, 232–244Google Scholar
  86. Van Orden G.C., Pennington B.F., Stone G.O. (2001). What do double dissociations prove?. Cognitive Science 25(1): 111–172CrossRefGoogle Scholar
  87. Wang P.P., Doherty S., Rourke S.B., Bellugi U. (1995). Unique profile of visuoperceptual skills in a genetic syndrome. Brain and Cognition 29, 54–65CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.University Center for Human ValuesPrinceton UniversityPrincetonUSA

Personalised recommendations