Skip to main content
Log in

The modular structure of physical theories

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

Any advanced theory of physics contains modules defined as essential components that are themselves theories with different domains of application. Different kinds of modules can be distinguished according to the way in which they fit in the symbolic and interpretive apparatus of a theory. The number and kind of the modules of a given theory vary as the theory evolves in time. The relative stability of modules and the variability of their insertion in other theories play a vital role in the application, comparison, construction, and communication of theories. Modularity conveys some global unity to physics through the sharing of modules by diverse theories. This alternative to rigid hierarchies and holistic totalities permits a dynamical, plastic, and symbiotic approach to physical theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson P. (1990). On the nature of physical laws. Physics today 43(12): 9

    Article  Google Scholar 

  • Balzer W., Moulines C.U., Sneed J. (1997). An architectonic for science: The structuralist program. Dordrecht, North Holland

    Google Scholar 

  • Barberousse A. (2000). La physique face à la probabilité. Paris, Vrin

    Google Scholar 

  • Batterman R. (2002). The devil in the details: Asymptotic reasoning in explanation, reduction, and emergence. Oxford, Oxford University Press

    Google Scholar 

  • Biagoli, M. (1993). The anthropology of incommensurability. In Galileo courtier. Chicago: The University of Chicago Press.

  • Buchwald J. (1985). From Maxwell to microphysics: Aspects of electromagnetism in the last quarter of the nineteenth century. Chicago, The University of Chicago Press

    Google Scholar 

  • Buchwald J. (1989). The rise of the wave theory of light: Optical theory and experiment in the early nineteenth century. Chicago, The University of Chicago Press

    Google Scholar 

  • Buchwald J., Schweber S. (1995). Conclusion. In Buchwald J. (ed). Scientific practice: Theories and stories of doing physics. Chicago, The University of Chicago Press, pp. 345–351

    Google Scholar 

  • Büttner J., Renn J., Schemmel M. (2003). Exploring the limits of classical physics: Planck, Einstein, and the structure of a scientific revolution. Studies in History and Philosophy of Modern Physics 34: 37–59

    Article  Google Scholar 

  • Cao T.Y., Schweber S. (1993). The conceptual foundations and the philosophical aspects of renormalization theory. Synthese 97: 33–108

    Article  Google Scholar 

  • Cartwright N. (1983). How the laws of physics lie. Oxford, Oxford University Press

    Google Scholar 

  • Cartwright N. (1999). The dappled world: A study of the boundaries of science. Cambridge, Cambridge University Press

    Google Scholar 

  • Cat J. (1998). The physicists debates on unification in physics at the end of the 20th century. Historical Studies in the Physical and Biological Sciences 28: 253–299

    Google Scholar 

  • Cat J. (2001). On understanding: Maxwell on the methods of illustration and scientific metaphor. Studies in History and Philosophy of Modern Physics 32: 395–441

    Article  Google Scholar 

  • Cat J. (2005). Modeling cracks and cracking models: Structure, mechanisms, boundary conditions, constraints, inconsistencies and the proper domain of natural laws. Synthese 146: 447–487

    Article  Google Scholar 

  • Darrigol O. (2000). Electrodynamics from Ampère to Einstein. Oxford, Oxford University Press

    Google Scholar 

  • Darrigol O. (2005). Worlds of flow: A history of hydrodynamics from the Bernoullis to Prandtl. Oxford, Oxford University Press

    Google Scholar 

  • Fodor J. (1983). Modularity of mind: An essay on faculty psychology. Cambridge, Cambridge University Press

    Google Scholar 

  • Franklin A. (1990). Experiment, right of wrong. Cambridge, Cambridge University Press

    Google Scholar 

  • Friedman M. (2001). Dynamics of reason: The 1999 Kant lectures at Stanford university. Stanford, Stanford University Press

    Google Scholar 

  • Galison P. (1995). Context and constraints. In Buchwald J. (ed). Scientific practice: Theories and stories of doing physics. Chicago, The University of Chicago Press, pp. 13–41

    Google Scholar 

  • Galison P. (1996). Introduction: The context of disunity. In Galison P., Stump D.J. (eds). The disunity of science: Boundaries, contexts, and power. Stanford, Stanford University Press, pp. 1–33

    Google Scholar 

  • Galison P. (1997). Image and logic. Chicago, The University of Chicago Press

    Google Scholar 

  • Galison P. (1998). Feynman’s war: Modeling weapons, modeling nature. Studies in History and Philosophy of Modern Physics 29: 391–434

    Article  Google Scholar 

  • Giere R. (1988). Explaining science: A cognitive approach. Chicago, The University of Chicago Press

    Google Scholar 

  • Gross D. (1985). Beyond quantum field theory. In Ambjørn J., Durhuus B.J., Petersen J.L. (eds). Recent developments in quantum field theory. Amsterdam, North Holland, pp. 151–168

    Google Scholar 

  • Hacking I. (1983). Representing and intervening: Introductory topics in the philosophy of natural science. Cambridge, Cambridge University Press

    Google Scholar 

  • Hacking I. (1996). The disunity of the sciences. In Galison P., Stump D.J. (eds). The disunity of science: Boundaries, contexts, and power. Stanford, Stanford University Press, pp. 37–74

    Google Scholar 

  • Harman P. (1987). Mathematics and reality in Maxwell’s dynamical physics: The natural philosophy of James Clerk Maxwell. In Kargon R., Achinstein P. (eds). Kelvin’s Baltimore lectures and modern theoretical physics: Historical and philosophical perspectives. Cambridge, Mass, MIT Press, pp. 267–297

    Google Scholar 

  • Heidelberger M. (2006). Applying models in fluid dynamics. International Studies in Philosophy of Science 20: 49–67

    Article  Google Scholar 

  • Hesse M. (1966). Models and analogies in science. Notre Dame, University of Notre Dame Press

    Google Scholar 

  • Karmiloff-Smith A. (1992). Beyond modularity: A developmental perspective on cognitive science. Cambridge, Mass, MIT Press

    Google Scholar 

  • Klein M.J. (1963). Einstein’s first paper on quanta. Natural Philosopher 2: 59–86

    Google Scholar 

  • Kuhn T. (1962). The structure of scientific revolutions. Chicago, The Univsersity of Chicago Press

    Google Scholar 

  • Kuhn T. (1978). Black-body theory and the quantum discontinuity, 1894–1912. New York, Oxford University Press

    Google Scholar 

  • Lévy-Leblond J.M., Le Bellac M. (1973). Galilean electromagnetism. Il nuovo cimento 14B: 217–233

    Google Scholar 

  • Liu C. (1999). Explaining the emergence of cooperative phenomena. Philosophy of Science 66: 92–106

    Article  Google Scholar 

  • Morrison M. (2000). Unifying scientific theories: Physical concepts and mathematical structures. Cambridge, Cambridge University Press

    Google Scholar 

  • Morrison M., Morgan M. (1999). Models as mediating instruments. In Morgan M., Morrison M. (eds). Models as mediators: Perspectives on natural and social science. Cambridge, Cambridge University Press, pp. 10–37

    Google Scholar 

  • Pickering A. (1995). Beyond constraint: The temporality of practice and the historicity of knowledge. In Buchwald J. (ed). Scientific practice: Theories and stories of doing physics. Chicago, The University of Chicago Press, pp. 42–55

    Google Scholar 

  • Polanyi M. (1964). Personal knowledge. New York, Harper & Row

    Google Scholar 

  • Ramsey J. (1997). Molecular shape, reduction, explanation, and approximate concepts. Synthese 111: 233–251

    Article  Google Scholar 

  • Schaffner K. (1967). Approaches to reduction. Philosophy of Science 34: 137–147

    Article  Google Scholar 

  • Shinn T., Ragouet P. (2005). Controverses sur la science: Pour une sociologie transversaliste de l’activité scientifique. Paris, Raisons d’agir

    Google Scholar 

  • Siegel D. (1991). Innovation in Maxwell’s electromagnetic theory: Molecular vortices, displacement current, and light. Cambridge, Cambridge University Press

    Google Scholar 

  • Simões A. (2002). Dirac’s claim and the chemists. Physics in Perspective 4: 253–266

    Article  Google Scholar 

  • Sklar L. (1967). Types of intertheoretic reduction. British Journal for the Philosophy of Science 18: 109–124

    Article  Google Scholar 

  • Smith C., Wise N. (1989). Energy and empire: A biographical study of Lord Kelvin. Cambridge, Cambridge University Press

    Google Scholar 

  • Suppe F. (1989). The semantic conception of theories and scientific realism. Chicago, The University of Chicago Press

    Google Scholar 

  • Suppes P. (1962). Models of data. In Nagel E., Suppes P., Tarski A. (eds). Methodology and philosophy of science: Proceedings of the 1960 International Congress. Stanford, Stanford University Press, pp. 252–261

    Google Scholar 

  • Suppes P. (1967). What is a scientific theory? In S. Morgenbesser (ed). Philosophy of science today. New York, Basic Books, pp. 55–67

    Google Scholar 

  • Torretti R. (1980). Creative understanding: Philosophical reflections on physics. Chicago, The University of Chicago Press

    Google Scholar 

  • van Fraassen B. (1980). The scientific image. Oxford, Clarendon Press

    Google Scholar 

  • van Fraassen B. (1991). Quantum mechanics: An empiricist view. Oxford, Clarendon Press

    Google Scholar 

  • Wise N. (1979). The mutual embrace of electricity and magnetism. Science 203: 1310–1318

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Darrigol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darrigol, O. The modular structure of physical theories. Synthese 162, 195–223 (2008). https://doi.org/10.1007/s11229-007-9181-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-007-9181-x

Keywords

Navigation