Synthese

, Volume 162, Issue 2, pp 195–223 | Cite as

The modular structure of physical theories

Article

Abstract

Any advanced theory of physics contains modules defined as essential components that are themselves theories with different domains of application. Different kinds of modules can be distinguished according to the way in which they fit in the symbolic and interpretive apparatus of a theory. The number and kind of the modules of a given theory vary as the theory evolves in time. The relative stability of modules and the variability of their insertion in other theories play a vital role in the application, comparison, construction, and communication of theories. Modularity conveys some global unity to physics through the sharing of modules by diverse theories. This alternative to rigid hierarchies and holistic totalities permits a dynamical, plastic, and symbiotic approach to physical theory.

Keywords

Structure of physical theories Modules Unity/disunity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson P. (1990). On the nature of physical laws. Physics today 43(12): 9CrossRefGoogle Scholar
  2. Balzer W., Moulines C.U., Sneed J. (1997). An architectonic for science: The structuralist program. Dordrecht, North HollandGoogle Scholar
  3. Barberousse A. (2000). La physique face à la probabilité. Paris, VrinGoogle Scholar
  4. Batterman R. (2002). The devil in the details: Asymptotic reasoning in explanation, reduction, and emergence. Oxford, Oxford University PressGoogle Scholar
  5. Biagoli, M. (1993). The anthropology of incommensurability. In Galileo courtier. Chicago: The University of Chicago Press.Google Scholar
  6. Buchwald J. (1985). From Maxwell to microphysics: Aspects of electromagnetism in the last quarter of the nineteenth century. Chicago, The University of Chicago PressGoogle Scholar
  7. Buchwald J. (1989). The rise of the wave theory of light: Optical theory and experiment in the early nineteenth century. Chicago, The University of Chicago PressGoogle Scholar
  8. Buchwald J., Schweber S. (1995). Conclusion. In Buchwald J. (ed). Scientific practice: Theories and stories of doing physics. Chicago, The University of Chicago Press, pp. 345–351Google Scholar
  9. Büttner J., Renn J., Schemmel M. (2003). Exploring the limits of classical physics: Planck, Einstein, and the structure of a scientific revolution. Studies in History and Philosophy of Modern Physics 34: 37–59CrossRefGoogle Scholar
  10. Cao T.Y., Schweber S. (1993). The conceptual foundations and the philosophical aspects of renormalization theory. Synthese 97: 33–108CrossRefGoogle Scholar
  11. Cartwright N. (1983). How the laws of physics lie. Oxford, Oxford University PressGoogle Scholar
  12. Cartwright N. (1999). The dappled world: A study of the boundaries of science. Cambridge, Cambridge University PressGoogle Scholar
  13. Cat J. (1998). The physicists debates on unification in physics at the end of the 20th century. Historical Studies in the Physical and Biological Sciences 28: 253–299Google Scholar
  14. Cat J. (2001). On understanding: Maxwell on the methods of illustration and scientific metaphor. Studies in History and Philosophy of Modern Physics 32: 395–441CrossRefGoogle Scholar
  15. Cat J. (2005). Modeling cracks and cracking models: Structure, mechanisms, boundary conditions, constraints, inconsistencies and the proper domain of natural laws. Synthese 146: 447–487CrossRefGoogle Scholar
  16. Darrigol O. (2000). Electrodynamics from Ampère to Einstein. Oxford, Oxford University PressGoogle Scholar
  17. Darrigol O. (2005). Worlds of flow: A history of hydrodynamics from the Bernoullis to Prandtl. Oxford, Oxford University PressGoogle Scholar
  18. Fodor J. (1983). Modularity of mind: An essay on faculty psychology. Cambridge, Cambridge University PressGoogle Scholar
  19. Franklin A. (1990). Experiment, right of wrong. Cambridge, Cambridge University PressGoogle Scholar
  20. Friedman M. (2001). Dynamics of reason: The 1999 Kant lectures at Stanford university. Stanford, Stanford University PressGoogle Scholar
  21. Galison P. (1995). Context and constraints. In Buchwald J. (ed). Scientific practice: Theories and stories of doing physics. Chicago, The University of Chicago Press, pp. 13–41Google Scholar
  22. Galison P. (1996). Introduction: The context of disunity. In Galison P., Stump D.J. (eds). The disunity of science: Boundaries, contexts, and power. Stanford, Stanford University Press, pp. 1–33Google Scholar
  23. Galison P. (1997). Image and logic. Chicago, The University of Chicago PressGoogle Scholar
  24. Galison P. (1998). Feynman’s war: Modeling weapons, modeling nature. Studies in History and Philosophy of Modern Physics 29: 391–434CrossRefGoogle Scholar
  25. Giere R. (1988). Explaining science: A cognitive approach. Chicago, The University of Chicago PressGoogle Scholar
  26. Gross D. (1985). Beyond quantum field theory. In Ambjørn J., Durhuus B.J., Petersen J.L. (eds). Recent developments in quantum field theory. Amsterdam, North Holland, pp. 151–168Google Scholar
  27. Hacking I. (1983). Representing and intervening: Introductory topics in the philosophy of natural science. Cambridge, Cambridge University PressGoogle Scholar
  28. Hacking I. (1996). The disunity of the sciences. In Galison P., Stump D.J. (eds). The disunity of science: Boundaries, contexts, and power. Stanford, Stanford University Press, pp. 37–74Google Scholar
  29. Harman P. (1987). Mathematics and reality in Maxwell’s dynamical physics: The natural philosophy of James Clerk Maxwell. In Kargon R., Achinstein P. (eds). Kelvin’s Baltimore lectures and modern theoretical physics: Historical and philosophical perspectives. Cambridge, Mass, MIT Press, pp. 267–297Google Scholar
  30. Heidelberger M. (2006). Applying models in fluid dynamics. International Studies in Philosophy of Science 20: 49–67CrossRefGoogle Scholar
  31. Hesse M. (1966). Models and analogies in science. Notre Dame, University of Notre Dame PressGoogle Scholar
  32. Karmiloff-Smith A. (1992). Beyond modularity: A developmental perspective on cognitive science. Cambridge, Mass, MIT PressGoogle Scholar
  33. Klein M.J. (1963). Einstein’s first paper on quanta. Natural Philosopher 2: 59–86Google Scholar
  34. Kuhn T. (1962). The structure of scientific revolutions. Chicago, The Univsersity of Chicago PressGoogle Scholar
  35. Kuhn T. (1978). Black-body theory and the quantum discontinuity, 1894–1912. New York, Oxford University PressGoogle Scholar
  36. Lévy-Leblond J.M., Le Bellac M. (1973). Galilean electromagnetism. Il nuovo cimento 14B: 217–233Google Scholar
  37. Liu C. (1999). Explaining the emergence of cooperative phenomena. Philosophy of Science 66: 92–106CrossRefGoogle Scholar
  38. Morrison M. (2000). Unifying scientific theories: Physical concepts and mathematical structures. Cambridge, Cambridge University PressGoogle Scholar
  39. Morrison M., Morgan M. (1999). Models as mediating instruments. In Morgan M., Morrison M. (eds). Models as mediators: Perspectives on natural and social science. Cambridge, Cambridge University Press, pp. 10–37Google Scholar
  40. Pickering A. (1995). Beyond constraint: The temporality of practice and the historicity of knowledge. In Buchwald J. (ed). Scientific practice: Theories and stories of doing physics. Chicago, The University of Chicago Press, pp. 42–55Google Scholar
  41. Polanyi M. (1964). Personal knowledge. New York, Harper & RowGoogle Scholar
  42. Ramsey J. (1997). Molecular shape, reduction, explanation, and approximate concepts. Synthese 111: 233–251CrossRefGoogle Scholar
  43. Schaffner K. (1967). Approaches to reduction. Philosophy of Science 34: 137–147CrossRefGoogle Scholar
  44. Shinn T., Ragouet P. (2005). Controverses sur la science: Pour une sociologie transversaliste de l’activité scientifique. Paris, Raisons d’agirGoogle Scholar
  45. Siegel D. (1991). Innovation in Maxwell’s electromagnetic theory: Molecular vortices, displacement current, and light. Cambridge, Cambridge University PressGoogle Scholar
  46. Simões A. (2002). Dirac’s claim and the chemists. Physics in Perspective 4: 253–266CrossRefGoogle Scholar
  47. Sklar L. (1967). Types of intertheoretic reduction. British Journal for the Philosophy of Science 18: 109–124CrossRefGoogle Scholar
  48. Smith C., Wise N. (1989). Energy and empire: A biographical study of Lord Kelvin. Cambridge, Cambridge University PressGoogle Scholar
  49. Suppe F. (1989). The semantic conception of theories and scientific realism. Chicago, The University of Chicago PressGoogle Scholar
  50. Suppes P. (1962). Models of data. In Nagel E., Suppes P., Tarski A. (eds). Methodology and philosophy of science: Proceedings of the 1960 International Congress. Stanford, Stanford University Press, pp. 252–261Google Scholar
  51. Suppes P. (1967). What is a scientific theory? In S. Morgenbesser (ed). Philosophy of science today. New York, Basic Books, pp. 55–67Google Scholar
  52. Torretti R. (1980). Creative understanding: Philosophical reflections on physics. Chicago, The University of Chicago PressGoogle Scholar
  53. van Fraassen B. (1980). The scientific image. Oxford, Clarendon PressGoogle Scholar
  54. van Fraassen B. (1991). Quantum mechanics: An empiricist view. Oxford, Clarendon PressGoogle Scholar
  55. Wise N. (1979). The mutual embrace of electricity and magnetism. Science 203: 1310–1318CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.CNRS: RehseisParisFrance

Personalised recommendations