When mechanistic models explain

Abstract

Not all models are explanatory. Some models are data summaries. Some models sketch explanations but leave crucial details unspecified or hidden behind filler terms. Some models are used to conjecture a how-possibly explanation without regard to whether it is a how-actually explanation. I use the Hodgkin and Huxley model of the action potential to illustrate these ways that models can be useful without explaining. I then use the subsequent development of the explanation of the action potential to show what is required of an adequate mechanistic model. Mechanistic models are explanatory.

This is a preview of subscription content, access via your institution.

References

  1. Boyd R. (1999). Kinds, complexity, and multiple Realization. Philosophical Studies, 95:67–98

    Article  Google Scholar 

  2. Bogen J. (2005). Regularities and causality; generalizations and causal explanations. Studies in the History and Philosophy of Science, C 36:397–420

    Google Scholar 

  3. Churchland P.M. (1989). A neurocomputational perspective: The nature of mind and the structure of science. Cambridge, MA, MIT Press

    Google Scholar 

  4. Cole K. (1992). Neuromembranes: Paths of ions. In: Worden I.F.G., Swazey J.P., Adelman G. (eds) Neurosciences, paths of discovery, I. Cambridge, Mass., MIT Press

    Google Scholar 

  5. Craver, C. F. (forthcoming). Explaining the brain: Mechanisms and the mosaic unity of neuroscience. Oxford: Oxford University Press.

  6. Craver C.F., Darden L. (2001). Discovering mechanisms in neurobiology: The case of spatial memory. In: Machamer P.K., Grush R., McLaughlin P. (eds) Theory and method in the neurosciences. Pittsburgh, PA, University of Pittsburgh Press, pp. 112–137

    Google Scholar 

  7. Cummins R. (1975). Functional analysis. Journal of Philosophy, 72:741–765

    Article  Google Scholar 

  8. Cummins R. (1983). The nature of psychological explanation. Cambridge, MA, Bradford/ MIT Press

    Google Scholar 

  9. Cummins R. (2000). “How does it work?” vs. “What are the laws?” Two conceptions of psychological explanation. In: Keil F., Wilson R. (eds) Explanation and cognition. Cambridge, MA, MIT Press, pp. 117–145

    Google Scholar 

  10. Dennett D.C. (1994). Cognitive science as reverse engineering: Several meanings of ‘Top Down’ and ‘Bottom Up’. In: Prawitz D., Skyrms B., Westerståhl D. (eds) Logic, methodology and philosophy of science IX. Amsterdam North-Holland, Elsevier Science BV, pp. 679–689

    Google Scholar 

  11. Feree T., Lockery S.R. (1999). Computational rules for chemotaxis in the nematode C. elegans. Journal of Computational Neuroscience, 6, 263–277

    Article  Google Scholar 

  12. Giere R. (1999). Science without laws. Chicago, IL, University of Chicago Press

    Google Scholar 

  13. Glennan S.S. (1996). Mechanisms and the nature of causation. Erkenntnis, 44, 49–71

    Article  Google Scholar 

  14. Glennan S.S. (2002). Rethinking mechanistic explanation. Philosophy of Science, 69 (Supplement):S342–S353

    Article  Google Scholar 

  15. Glennan S.S. (2005). Modeling mechanisms. Studies in the History and Philosophy of Science, C. 36, 443–464

    Google Scholar 

  16. Hacking I. (1983). Representing and intervening. Cambridge, U.K., Cambridge University Press

    Google Scholar 

  17. Hempel C.G. (1965). Aspects of scientific explanation and other essays in the philosophy of science. New York, Free Press

    Google Scholar 

  18. Hille B., Armstrong C., MacKinnon R. (1999). Ion channels: From idea to reality. Nature Medicine, 5:1105–1109

    Article  Google Scholar 

  19. Hodgkin A.L. (1992). Chance & design: Reminiscences of science in peace and war. Cambridge, Cambridge University Press

    Google Scholar 

  20. Hodgkin A.L., Huxley A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544

    Google Scholar 

  21. Huxley, A. F. (1963). The quantitative analysis of excitation and conduction in nerve. At Nobelprize.org. http://nobelprize.org/medicine/laureates/1963/huxley-lecture.html

  22. Kauffman, S. A. (1971). Articulation of parts explanation in biology and the rational search for them. In R. C. Buck, & R. S. Cohen (Eds.), PSA 1970. Dordrecht: Reidel.

  23. Kitcher P. (1984). 1953 and all that: A tale of two sciences. Philosophical Review, 93, 335–373

    Article  Google Scholar 

  24. Lewis D. (1973). Causation. Journal of Philosophy, 70, 556–567

    Article  Google Scholar 

  25. Lycan W. (1999). The continuity of levels of nature. In: Lycan W. (eds) Mind and cognition: A reader, 2nd edn. Malden, MA, Blackwell Publishers

    Google Scholar 

  26. Machamer P.K., Darden L., Craver C.F. (2000). Thinking about mechanisms. Philosophy of Science, 57, 1–25

    Article  Google Scholar 

  27. McClelland J., Rumelhart D. (1986). Parallel distributed processing: Explorations in the microstructure of cognition, vol. 2. Cambridge, MA, MIT Press

    Google Scholar 

  28. Morgan M.S., Morrison M. (1999). Models as mediators: Perspectives on natural and social science. Cambridge, Cambridge University Press

    Google Scholar 

  29. Pearl J. (2000). Causality: Models, reasoning, and inference. Cambridge, UK, Cambridge University Press

    Google Scholar 

  30. Piccinini, G. (forthcoming). Computational modeling vs. computational explanation: is everything a turing machine, and does it matter to the philosophy of mind? Australasian Journal of Philosophy.

  31. Povinelli D. (2000). Folk physics for apes: The chimpanzee’s theory of how the world works. Oxford, Oxford University Press

    Google Scholar 

  32. Prinz A. (2004). Neural networks: Models and neurons show hybrid vigor in real time. Curr Biol, 16:R661–R662

    Article  Google Scholar 

  33. Psillos, S. (1999). Scientific realism: How science tracks truth. Routledge.

  34. Rummelhart D., McClelland J. (1986). Parallel distributed processing: Explorations in the microstructure of cogntion. Cambridge, MIT Press

    Google Scholar 

  35. Salmon W.C. (1984). Scientific explanation and the causal structure of the world. Princeton, Princeton University Press

    Google Scholar 

  36. Simon H. (1969). The sciences of the artificial. Cambridge, MA, MIT Press

    Google Scholar 

  37. Suppe F. (1989). The semantic conception of theories and scientific realism. Urbana, IL, University of Illinois Press

    Google Scholar 

  38. Suppes P. (1967). What is a scientific theory?. In: Morgenbesser S. (eds) Philosophy of science today. New York, Basic Books

    Google Scholar 

  39. Swartz K.J. (2004). Towards a structural view of gating in potassium channels. Nature Reviews Neuroscience, 5(12):905–916

    Article  Google Scholar 

  40. Weber M. (2005). Philosophy of experimental biology. Cambridge, Cambridge University Press

    Google Scholar 

  41. Wimsatt W. (1981). Robustness, reliabilty, and overdetermination. In: Brewer M., Collins B. (eds) Scientific inquiry and the social sciences. San Francisco CA, Jossey-Bass Publishers

    Google Scholar 

  42. Wimsatt, W. (1997). Aggregativity: Reductive heuristics for finding emergence. In L. Darden (Ed.), PSA-1996, v.2. Philosophy of Science, 66, S372–S384.

  43. Woodward J. (2003). Making things happen. New York, Oxford University Press

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carl F. Craver.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Craver, C.F. When mechanistic models explain. Synthese 153, 355–376 (2006). https://doi.org/10.1007/s11229-006-9097-x

Download citation

Keywords

  • Mechanisms
  • Explanation
  • Models
  • Electrophysiology
  • Action
  • Potential
  • Hodgkin
  • Huxley
  • Functional Analysis