Skip to main content

Set-Valued Evenly Convex Functions: Characterizations and C-Conjugacy


In this work we deal with set-valued functions with values in the power set of a separated locally convex space where a nontrivial pointed convex cone induces a partial order relation. A set-valued function is evenly convex if its epigraph is an evenly convex set, i.e., it is the intersection of an arbitrary family of open half-spaces. In this paper we characterize evenly convex set-valued functions as the pointwise supremum of its set-valued e-affine minorants. Moreover, a suitable conjugation pattern will be developed for these functions, as well as the counterpart of the biconjugation Fenchel-Moreau theorem.


  1. Daniilidis, A., Martínez-Legaz, J.E.: Characterizations of evenly convex sets and evenly quasiconvex functions. J. Math. Anal. Appl. 273, 58–66 (2002)

    MathSciNet  Article  Google Scholar 

  2. Fajardo, M.D.: Regularity conditions for strong duality in evenly convex optimization problems. An application to Fenchel duality. J. Convex Anal. 22(3), 711–731 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Fajardo, M.D., Goberna, M.A., Rodríguez, M.M.L., Vicente-Pérez, J.: Even Convexity and Optimization. Handling strict inequalities. Springer, Berlin (2020)

    Book  Google Scholar 

  4. Fajardo, M.D., Rodríguez, M.M.L., Vidal, J.: Lagrange duality for evenly convex optimization problems. J. Optim. Theory Appl. 168(1), 109–128 (2016)

    MathSciNet  Article  Google Scholar 

  5. Fajardo, M.D., Vidal, J.: Stable strong Fenchel and Lagrange duality for evenly convex optimization problems. Optimization 65(9), 1675–1691 (2016)

    MathSciNet  Article  Google Scholar 

  6. Fajardo, M.D., Vidal, J.: A comparison of alternative c-conjugate dual problems in infinite convex optimization. Optimization 66(5), 705–722 (2017)

    MathSciNet  Article  Google Scholar 

  7. Fajardo, M.D., Vidal, J.: Necessary and sufficient conditions for strong fenchel-Lagrange duality via a coupling conjugation scheme. J. Optim. Theory Appl. 176(1), 57–73 (2018)

    MathSciNet  Article  Google Scholar 

  8. Fenchel, W.: A remark on convex sets and polarity. Comm. Sèm. Math. Univ. Lund (Medd. Lunds Algebra Univ. Math. Sem.) pp. 82–89. Tome Supplémentaire (1952)

  9. Goberna, M.A., Jornet, V., Rodríguez, M.M.L.: On linear systems containing strict inequalities. Linear Algebra Appl. 360, 151–171 (2003)

    MathSciNet  Article  Google Scholar 

  10. Goberna, M.A., Rodríguez, M.M.L.: Analyzing linear systems containing strict inequalities via evenly convex hulls. Eur. J. Oper. Res. 169, 1079–1095 (2006)

    MathSciNet  Article  Google Scholar 

  11. Hamel, A.: Variational Principles on Metric and Uniform Spaces. Habilitation thesis, Martin-Luther-Universität Halle-Wittenberg (2005)

  12. Hamel, A.: A duality theory for set-valued functions I: Fenchel conjugation theory. Set-Valued Anal. 17, 153–182 (2009)

    MathSciNet  Article  Google Scholar 

  13. Khan, A.A., Tammer, C., Zălinescu, C.: Set-valued Optimization. Springer, Berlin (2015)

    Book  Google Scholar 

  14. Klee, V., Maluta, E., Zanco, C.: Basic properties of evenly convex sets. J. Convex Anal. 14(1), 137–148 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Kuroiwa, D., Tanaka, T., Ha, T.: On cone convexity of set-valued maps. Nonlinear Anal. 30(3), 1487–1496 (1997)

    MathSciNet  Article  Google Scholar 

  16. Martínez-Legaz, J.E.: A generalized concept of conjugation methods. In: Hiriart-Urruty, J.B., Oettli, W., Stoer, J. (eds.) Optimization: Theory and Algorithms, Lecture Notes in Pure and Applied Mathematics, vol. 86, pp 45–49. Marcel Dekker, New York (1983)

  17. Martínez-Legaz, J.E.: Quasiconvex duality theory by generalized conjugation methods. Optimization 19, 603–652 (1988)

    MathSciNet  Article  Google Scholar 

  18. Martínez-Legaz, J.E.: Duality between direct and indirect utility functions under minimal hypotheses. J. Math. Econ. 20, 199–209 (1991)

    MathSciNet  Article  Google Scholar 

  19. Martínez-Legaz, J.E.: Generalized convex duality and its economic applications. In: Handbook of Generalized Convexity and Generalized Monotonicity, Nonconvex Optim. Appl., vol. 76, pp 237–292. Springer, New York (2005)

  20. Martínez-Legaz, J.E., Vicente-Pérez, J.: The e-support function of an e-convex set and conjugacy for e-convex functions. J. Math. Anal. Appl. 376, 602–612 (2011)

    MathSciNet  Article  Google Scholar 

  21. Moreau, J.J.: Inf-convolution, sous-additivité, convexité des fonctions numériques. J. Math. Pures Appl. 49, 109–154 (1970)

    MathSciNet  MATH  Google Scholar 

  22. Passy, U., Prisman, E.: Conjugacy in quasiconvex programming. Math. Programming 30, 121–146 (1984)

    MathSciNet  Article  Google Scholar 

  23. Penot, J.P., Volle, M.: On quasiconvex duality. Math. Oper. Res. 15, 597–625 (1990)

    MathSciNet  Article  Google Scholar 

  24. Rodríguez, M.M.L., Vicente-Pérez, J.: On evenly convex functions. J. Convex Anal. 18, 721–736 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, New Jersey (2002)

    Book  Google Scholar 

Download references


The author sincerely thanks anonymous referees for their careful reading and thoughtful comments. Their suggestions have significantly improved the quality of the paper.

Research partially supported by MINECO of Spain and ERDF of EU, Grant MTM2014-59179-C2-1-P.


Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Author information

Authors and Affiliations


Corresponding author

Correspondence to M. D. Fajardo.

Ethics declarations

Conflict of Interests

The author declares that she has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fajardo, M.D. Set-Valued Evenly Convex Functions: Characterizations and C-Conjugacy. Set-Valued Var. Anal (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Evenly convex sets
  • Set-valued functions
  • Partially ordered spaces
  • Convex conjugation
  • Fenchel-Moreau theorem

Mathematics Subject Classification (2010)

  • 49N15
  • 52A41
  • 90C25