Skip to main content
Log in

Conservative and Semismooth Derivatives are Equivalent for Semialgebraic Maps

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

Subgradient and Newton algorithms for nonsmooth optimization require generalized derivatives to satisfy subtle approximation properties: conservativity for the former and semismoothness for the latter. Though these two properties originate in entirely different contexts, we show that in the semi-algebraic setting they are equivalent. Both properties for a generalized derivative simply require it to coincide with the standard directional derivative on the tangent spaces of some partition of the domain into smooth manifolds. An appealing byproduct is a new short proof that semi-algebraic maps are semismooth relative to the Clarke Jacobian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Bolte, J., Daniilidis, A., Lewis, A.: Tame functions are semismooth. Math. Program. 117(1), 5–19 (2009)

    Article  MathSciNet  Google Scholar 

  2. Bolte, J., Daniilidis, A., Lewis, A., Shiota, M.: Clarke subgradients of stratifiable functions. SIAM J. Optim. 18(2), 556–572 (2007)

    Article  MathSciNet  Google Scholar 

  3. Bolte, J., Pauwels, E: Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning. Mathematical Programming (2020)

  4. Bolte, J., Pauwels, E.: A mathematical model for automatic differentiation in machine learning. arXiv:2006.02080 (2020)

  5. Clarke, F. H., Ledyaev, Y. u., Stern, R. I., Wolenski, P. R.: Nonsmooth Analysis and Control Theory Texts in Math, vol. 178. Springer, New York (1998)

    Google Scholar 

  6. Coste, M.: An introduction to o-minimal geometry. RAAG Notes, 81 pages. Institut de Recherche Mathématiques de Rennes (1999)

  7. Coste, M.: An introduction to semialgebraic geometry. RAAG notes, 78 pages, Institut de Recherche Mathématiques de Rennes (2002)

  8. Daniilidis, A., Drusvyatskiy, D.: Pathological subgradient dynamics. SIAM J. Optim. 30(2), 1327–1338 (2020)

    Article  MathSciNet  Google Scholar 

  9. Davis, D., Drusvyatskiy, D., Kakade, S., Lee, J. D.: Stochastic subgradient method converges on tame functions. Foundations of Computational Mathematics 20(1), 119–154 (2020)

    Article  MathSciNet  Google Scholar 

  10. Drusvyatskiy, D., Ioffe, A., Lewis, A.: Curves of descent. SIAM J. Control. Optim. 53(1), 114–138 (2015)

    Article  MathSciNet  Google Scholar 

  11. Drusvyatskiy, D., Lewis, A.: Semi-algebraic functions have small subdifferentials. Math. Program. 140(1), 5–29 (2013)

    Article  MathSciNet  Google Scholar 

  12. Ioffe, A. D.: Variational Analysis of Regular Mappings. Springer Monographs in Mathematics. Springer, Cham (2017). Theory and applications

    Book  Google Scholar 

  13. Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization, volume 60 of Nonconvex Optimization and its Applications. Kluwer Academic Publishers, Dordrecht (2002). Regularity, calculus, methods and applications

    MATH  Google Scholar 

  14. Lewis, A., Tian, T.: The structure of conservative gradient fields. arXiv:2101.00699 (2021)

  15. Majewski, S., Miasojedow, B., Moulines, E.: Analysis of nonsmooth stochastic approximation: the differential inclusion approach. arXiv:1805.01916 (2018)

  16. Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control. Optim. 15(6), 959–972 (1977)

    Article  MathSciNet  Google Scholar 

  17. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory. Grundlehren der mathematischen Wissenschaften, vol. 330. Springer, Berlin (2006)

    Book  Google Scholar 

  18. Norkin, V: Generalized-differentiable functions. Cybernetics 16(1), 10–12 (1980)

    Article  MathSciNet  Google Scholar 

  19. Norkin, V: Stochastic generalized-differentiable functions in the problem of nonconvex nonsmooth stochastic optimization. Cybernetics 22(6), 804–809 (1986)

    Article  Google Scholar 

  20. Penot, J. -P.: Calculus without derivatives, volume 266 of Graduate Texts in Mathematics. Springer, New York (2013)

    Book  Google Scholar 

  21. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Mathematical Programming 58(1-3), 353–367 (1993)

    Article  MathSciNet  Google Scholar 

  22. Rockafellar, R. T., Wets, R. J. -B.: Variational Analysis Grundlehren der mathematischen Wissenschaften, vol. 317. Springer, Berlin (1998)

    Google Scholar 

  23. Ruszczyński, A.: Convergence of a stochastic subgradient method with averaging for nonsmooth nonconvex constrained optimization. Optim. Lett. 1–11 (2020)

  24. Shapiro, A.: On concepts of directional differentiability. J. Optim. Theory Appl. 66(3), 477–487 (1990)

    Article  MathSciNet  Google Scholar 

  25. van den Dries, L., Miller, C.: Geometric categories and o-minimal structures. Duke Math. J. 84, 497–540 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Adrian Lewis, Tonghua Tian, and the two anonymous reviewers for insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damek Davis.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research of Davis supported by an Alfred P. Sloan research fellowship and NSF DMS award 2047637.

Research of Drusvyatskiy was supported by the NSF DMS 1651851 and CCF 1740551 awards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, D., Drusvyatskiy, D. Conservative and Semismooth Derivatives are Equivalent for Semialgebraic Maps. Set-Valued Var. Anal 30, 453–463 (2022). https://doi.org/10.1007/s11228-021-00594-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-021-00594-0

Keywords

Mathematics Subject Classification (2010)

Navigation