Skip to main content

Kantorovich’s Fixed Point Theorem and Coincidence Point Theorems for Mappings in Vector Metric Spaces

Abstract

The fixed points and coincidence points of mappings of v-metric spaces, i.e., sets on which a vector metric is defined, are investigated. The values of such a metric are elements of a cone of a Banach space rather than real nonnegative numbers. Analogs of Kantorovich’s theorems on the existence and uniqueness of a fixed point and the convergence of an iteration sequence to this point are obtained. Conditions for the existence of a coincidence point of two mappings are obtained. The results obtained are generalized to the case of set-valued mappings.

This is a preview of subscription content, access via your institution.

References

  1. Kantorovich, L.V., Akilov, G.P.: Functional analysis moscow: nauka (1977); oxford: pergamon (1982)

  2. Kantorovich, L.V.: Some further applications of the Newton method for functional equations. Vestn. Leningr. Univ. 7, 68–103 (1957). [in Russian]

    MATH  Google Scholar 

  3. Zubelevich, O., Coincidence points of mappings in Banach spaces, https://arxiv.org/pdf/1804.10501.pdf

  4. Zubelevich, O.: Coincidence points of mappings in Banach spaces. Fixed Point Theory 21(1), 389–394 (2020)

    Article  MathSciNet  Google Scholar 

  5. Arutyunov, A.V., Zhukovskiy, E.S., Zhukovskiy, S.E.: Kantorovich’s fixed point theorem in metric spaces and coincidence points. Proc. Steklov Inst. Math. 304, 60–73 (2019)

    Article  MathSciNet  Google Scholar 

  6. Arutyunov, A.V., Zhukovskiy, E.S., Zhukovskiy, S.E., On the stability of fixed points and coincidence points of mappings in the generalized Kantorovich’s theorem, Topol. Appl. (2020) [in press]

  7. Perov, A.I.: Multidimensional version of M.A. Krasnosel’skii’s generalized contraction principle. Funct. Anal. Appl. 44(1), 69–72 (2010)

    Article  MathSciNet  Google Scholar 

  8. Zhukovskiy, E.S., Panasenko, E.A.: On fixed points of multivalued mappings in spaces with a vector-valued metric. Proc. Steklov Inst. Math. 305(suppl. 1), S191–S203 (2019)

    Article  Google Scholar 

  9. Zhukovskiy, E.S.: Perturbations of vectorial coverings and systems of equations in metric spaces. Sib. Math. J. 57(2), 230–241 (2016)

    Article  MathSciNet  Google Scholar 

  10. Zhukovskiy, E.S.: On coincidence points of vector mappings, Russian. Math. (Iz. VUZ) 60(10), 10–22 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Zhukovskiy, E.S.: On coincidence points of multivalued vector mappings of metric spaces, Math. notes, vol. 100, iss. 3–4, pp 363–379 (2016)

  12. Arutyunov, A.V., Zhukovskiy, E.S., Zhukovskiy, S.E.: Coincidence points principle for mappings in partially ordered spaces. Topol. Appl. 179(1), 13–33 (2015)

    Article  MathSciNet  Google Scholar 

  13. Krasnosel’skii, M.A., Zabreiko, P.P.: Geometric methods of nonlinear analysis moscow: nauka (1975)

  14. Zhukovskiy, E.S.: Perturbations of coverings in vector metric spaces, Tambov University Reports. Series:, Natural and Technical Sciences 21(2), 375–379 (2016). [in Russian]

    Google Scholar 

  15. Functional Analysis. (Ed. by S.G Krein) moscow: nauka (1972) [in Russian]

  16. Çevik, C., Altun, I.: Vector metric spaces and some properties. Topol. Methods Nonlinear Anal. 34(2), 375–382 (2009)

    Article  MathSciNet  Google Scholar 

  17. Arutyunov, A.V.: Covering mappings in metric spaces and fixed points. Dokl. Math. 76(2), 665–668 (2007)

    Article  MathSciNet  Google Scholar 

  18. Arutyunov, A.V.: Stability of coincidence points and properties of covering mappings. Math. Notes 86(iss. 1–2), 153–158 (2009)

    Article  MathSciNet  Google Scholar 

  19. Arutyunov, A.V., Greshnov, A.V.: (Q1,q2)-Quasimetric spaces. Covering mappings and coincidence points. Izv. Math. 82(iss. 2), 245–272 (2018)

    Article  MathSciNet  Google Scholar 

  20. Arutyunov, A.V., Zhukovskiy, E.S., Zhukovskiy, S.E.: Coincidence points principle for set-valued mappings in partially ordered spaces. Topol. Appl. 201, 330–343 (2016)

    Article  MathSciNet  Google Scholar 

  21. Arutyunov, A.V., Zhukovskiy, E.S., Zhukovskiy, S.E.: On the cardinality of the coincidence set for mappings of metric, normed and partially ordered spaces. Sb Math. 209(8), 1107–1130 (2018)

    Article  MathSciNet  Google Scholar 

  22. Arutyunov, A.V., Gel’man, B.D.: On the structure of the set of coincidence points. Sb Math. 206(3), 370–388 (2015)

    Article  MathSciNet  Google Scholar 

  23. Arutyunov, A.V., Zhukovskiy, S.E.: Coincidence points of mappings in vector metric spaces and their applications to differential equations and control systems. Diff. Eqns. 53(11), 1440–1448 (2017)

    MATH  Google Scholar 

  24. Arutyunov, A.V., Obukhovskii, V.V.: Convex and Set-Valued Analysis: Selected Topics. Walter de Gruyter GmbH, Berlin/Boston (2017)

    MATH  Google Scholar 

  25. Borisovich, Y. u. G., Gel’man, B.D., Myshkis, A.D., Obukhovskii, V.V.: Introduction to the theory of multivalued mappings and differential inclusions moscow: URSS. [in Russian] (2005)

  26. Mordukhovich, B.S., Analysis, Variational, Differentiation, Generalized: I: Basic Theory. Springer, Berlin (2006)

    Google Scholar 

  27. Warga, J.: Optimal control of differential and functional equations NY: academic press (1972)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey E. Zhukovskiy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by the grants of the Russian Foundation for Basic Research (Project no. 19-01-00080, 20-31-70013) and by the grant of the President of the Russian Federation (project no. MD-2658.2021.1.1). The results of the section 5are due to the second author who was supported by the grant of the Russian Science Foundation (Project no. 20-11-20131).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arutyunov, A.V., Zhukovskiy, E.S., Zhukovskiy, S.E. et al. Kantorovich’s Fixed Point Theorem and Coincidence Point Theorems for Mappings in Vector Metric Spaces. Set-Valued Var. Anal 30, 397–423 (2022). https://doi.org/10.1007/s11228-021-00588-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-021-00588-y

Keywords

  • Kantorovich’s fixed point theorem
  • Coincidence point
  • Vector metric space

Mathematics Subject Classification (2010)

  • 49J53
  • 54H25