Advertisement

Generalized Derivatives for the Solution Operator of the Obstacle Problem

  • Anne-Therese Rauls
  • Gerd WachsmuthEmail author
Article
  • 11 Downloads

Abstract

We characterize generalized derivatives of the solution operator of the obstacle problem. This precise characterization requires the usage of the theory of so-called capacitary measures and the associated solution operators of relaxed Dirichlet problems. The generalized derivatives can be used to obtain a novel necessary optimality condition for the optimal control of the obstacle problem with control constraints. A comparison shows that this system is stronger than the known system of C-stationarity.

Keywords

Obstacle problem Generalized derivative Capacitary measure Relaxed Dirichlet problem C-stationarity 

Mathematics Subject Classification (2010)

49K40 47J20 49J52 58C20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to thank Giuseppe Buttazzo for pointing out the result of [30, Lemma 4.12] which led to the discovery of Theorem 3.16. Further, Constantin Christof pointed out the result of Theorem 3.9 (f-supp(1 + Δw) =qΩ ∖ O for w = LO(1)) and this is gratefully acknowledged. He gave a different, interesting proof based on differentiability properties of the obstacle problem and this proof might appear elsewhere.

This work is supported by DFG grants UL158/10-1 and WA3636/4-1 within the Priority Program SPP 1962 (Non-smooth and Complementarity-based Distributed Parameter Systems: Simulation and Hierarchical Optimization).

References

  1. 1.
    Mignot, F.: Contrôle dans les inéquations variationelles elliptiques. J. Funct. Anal. 22, 130–185 (1976).  https://doi.org/10.1016/0022-1236(76)90017-3 CrossRefzbMATHGoogle Scholar
  2. 2.
    Schiela, A., Wachsmuth, D.: Convergence analysis of smoothing methods for optimal control of stationary variational inequalities with control constraints. ESAIM: Math. Modell. Numer. Anal. 47(3), 771–787 (2013).  https://doi.org/10.1051/m2an/2012049 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Christof, C., Clason, C., Meyer, C., Walther, S.: Optimal control of a non-smooth semilinear elliptic equation. Math. Control Related Fields 8(1), 247–276 (2018).  https://doi.org/10.3934/mcrf.2018011 MathSciNetCrossRefGoogle Scholar
  4. 4.
    Rauls, A.-T., Ulbrich, S.: Subgradient computation for the solution operator of the obstacle problem. Tech. rep., preprint SPP1962-056. https://spp1962.wias-berlin.de/preprints/056.pdf (2018)
  5. 5.
    Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization. Regularity, Calculus, Methods and Applications. Kluwer Academic Publishers, Dordrecht (2002)zbMATHGoogle Scholar
  6. 6.
    Outrata, J., Kočvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Theory, Applications and Numerical Results. Kluwer Academic Publishers, Dordrecht (1998)zbMATHGoogle Scholar
  7. 7.
    Attouch, H., Buttazzo, G., Michaille, G.: Variational analysis in Sobolev and BV spaces, 2nd edn. Volume 17 of MOS-SIAM Series on Optimization, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Optimization Society, Philadelphia, PA, Applications to PDEs and optimization.  https://doi.org/10.1137/1.9781611973488 (2014)
  8. 8.
    Delfour, M.C., Zolésio, J.-P.: Shapes and Geometries. Metrics, Analysis, Differential Calculus, and Optimization, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2011)zbMATHGoogle Scholar
  9. 9.
    Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)CrossRefGoogle Scholar
  10. 10.
    Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (1993). Oxford Science PublicationszbMATHGoogle Scholar
  11. 11.
    Kilpeläinen, T., Malý, J.: Supersolutions to degenerate elliptic equation on quasi open sets. Commun. Partial Diff. Equ. 17(3-4), 371–405 (1992).  https://doi.org/10.1080/03605309208820847 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Rudin, W.: Real and Complex Analysis. Mathematics Series. McGraw-Hill (1987)Google Scholar
  13. 13.
    Harder, F., Wachsmuth, G.: Comparison of optimality systems for the optimal control of the obstacle problem. GAMM-Mitteilungen 40(4), 312–338 (2018).  https://doi.org/10.1002/gamm.201740004 MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wachsmuth, G.: Strong stationarity for optimal control of the obstacle problem with control constraints. SIAM J. Optim. 24 (4), 1914–1932 (2014).  https://doi.org/10.1137/130925827 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Bucur, D., Buttazzo, G.: Variational Methods in Shape Optimization Problems. Basel, Birkhäuser (2005)zbMATHGoogle Scholar
  16. 16.
    Dal Maso, G., Garroni, A.: New results on the asymptotic behavior of Dirichlet problems in perforated domains. Math. Models Methods Appl. Sci. 4(3), 373–407 (1994).  https://doi.org/10.1142/S0218202594000224 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Dal Maso, G., Murat, F.: Asymptotic behaviour and correctors for linear dirichlet problems with simultaneously varying operators and domains, Annales de l’Institut Henri Poincaré. Analyse Non Linéaire 21 (4), 445–486 (2004).  https://doi.org/10.1016/j.anihpc.2003.05.001 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Buttazzo, G., Dal Maso, G.: Shape optimization for dirichlet problems: Relaxed formulation and optimality conditions. Appl. Math. Optim. 23(1), 17–49 (1991).  https://doi.org/10.1007/BF01442391 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Dal Maso, G.: Γ-convergence and μ-capacities. Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV 14(3), 423–464 (1988) (1987). http://www.numdam.org/item?id=ASNSP_1987_4_14_3_423_0 MathSciNetzbMATHGoogle Scholar
  20. 20.
    Dal Maso, G., Mosco, U.: Wiener’s criterion and Γ-convergence. Appl. Math. Optim. 15(1), 15–63 (1987).  https://doi.org/10.1007/BF01442645 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Dal Maso, G., Garroni, A.: The capacity method for asymptotic Dirichlet problems. Asymptot. Anal. 15(3-4), 299–324 (1997)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Dal Maso, G., Malusa, A.: Approximation of relaxed Dirichlet problems by boundary value problems in perforated domains. Proc. R. Soc. Edinburgh. Section A Math. 125(1), 99–114 (1995).  https://doi.org/10.1017/S0308210500030778 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Velichkov, B.: Existence and Regularity Results for Some Shape Optimization Problems, vol. 19 of Tesi. Scuola Normale Superiore di Pisa (Nuova Series) [Theses of Scuola Normale Superiore di Pisa (New Series)]. Pisa, Edizioni della Normale (2015)Google Scholar
  24. 24.
    Chipot, M., Dal Maso, G.: Relaxed shape optimization: the case of nonnegative data for the Dirichlet problem. Adv. Math. Sci. Appl. 1(1), 47–81 (1992)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Dal Maso, G., Mosco, U.: Wiener criteria and energy decay for relaxed Dirichlet problems. Arch. Ration. Mech. Anal. 95, 345–387 (1986).  https://doi.org/10.1007/BF00276841 MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Stollmann, P.: Closed ideals in Dirichlet spaces, potential analysis. An International Journal Devoted to the Interactions between Potential Theory, Probability Theory, Geometry and Functional Analysis 2(3), 263–268 (1993).  https://doi.org/10.1007/BF01048510 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Dal Maso, G.: On the integral representation of certain local functionals. Ricerche Mat. 32, 85–113 (1983)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Cioranescu, D., Murat, F.: A strange term coming from nowhere. In: Topics in the Mathematical Modelling of Composite Materials, vol. 31 of Progr. Nonlinear Differential Equations Appl., pp 45–93. Birkhäuser, Boston (1997)Google Scholar
  29. 29.
    Wachsmuth, G.: Towards M-stationarity for optimal control of the obstacle problem with control constraints. SIAM J. Control. Optim. 54(2), 964–986 (2016).  https://doi.org/10.1137/140980582 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Bucur, D., Buttazzo, G., Trebeschi, P.: An existence result for optimal obstacles. J. Funct. Anal. 162(1), 96–119 (1999).  https://doi.org/10.1006/jfan.1998.3363 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Research Group Optimization, Department of MathematicsTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Chair of Optimal Control, Institute of MathematicsBrandenburgische Technische Universität Cottbus-SenftenbergCottbusGermany

Personalised recommendations