A Class of Generalized Evolutionary Problems Driven by Variational Inequalities and Fractional Operators


This paper is devoted to a generalized evolution system called fractional partial differential variational inequality which consists of a mixed quasi-variational inequality combined with a fractional partial differential equation in a Banach space. Invoking the pseudomonotonicity of multivalued operators and a generalization of the Knaster-Kuratowski-Mazurkiewicz theorem, first, we prove that the solution set of the mixed quasi-variational inequality involved in system is nonempty, closed and convex. Next, the measurability and upper semicontinuity for the mixed quasi-variational inequality with respect to the time variable and state variable are established. Finally, the existence of mild solutions for the system is delivered. The approach is based on the theory of operator semigroups, the Bohnenblust-Karlin fixed point principle for multivalued mappings, and theory of fractional operators.


  1. 1.

    Barbu, V.: Analysis and Control of Nonlinear Infinite Dimensional Systems. Academic Press, Boston (1993)

    Google Scholar 

  2. 2.

    Bohnenblust, H.F., Karlin, S.: On a theorem of ville. In: Contributions to the Theory of Games. Princeton University Press, Princeton (1950)

  3. 3.

    Bothe, D.: Multivalued perturbations of m-accretive differential inclusions. Israel J. Math. 108, 109–138 (1998)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Chen, X.J., Wang, Z.Y.: Convergence of regularized time-stepping methods for differential variational inequalities. SIAM J. Optim. 23, 1647–1671 (2013)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Chen, X.J., Wang, Z.Y.: Differential variational inequality approach to dynamic games with shared constraints. Math. Program. 146, 379–408 (2014)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Ekeland, I., Teman, R.: Convex Analysis and Variational Problems. North holland, Amsterdam (1976)

  7. 7.

    Fan, K.: Some properties of convex sets related to fixed point theorems. Math. Ann. 266, 519–537 (1984)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Gwinner, J.: On a new class of differential variational inequalities and a stability result. Math. Program. 139, 205–221 (2013)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Gwinner, J.: On the p-version approximation in the boundary element method for a variational inequality of the second kind modelling unilateral contact and given friction. Appl. Numer. Math. 59, 2774–2784 (2009)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Gwinner, J.: Hp-FEM convergence for unilateral contact problems with Tresca friction in plane linear elastostatics. J. Comput. Appl. Math. 254, 175–184 (2013)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Kamenskii, M., Obukhovskii, V., Zecca, P.: Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Space. Water de Gruyter, Berlin (2001)

    Google Scholar 

  12. 12.

    Ke, T.D., Loi, N.V., Obukhovskii, V.: Decay solutions for a class of fractional differential variational inequalities. Fract. Calc. Appl. Anal. 18, 531–553 (2015)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. In: North–Holland Mathematics Studies. Elsevier Science B.V., Amsterdam (2006)

  14. 14.

    Li, X.S., Huang, N.J., O’Regan, D.: Differential mixed variational inequalities in finite dimensional spaces. Nonlinear Anal. 72, 3875–3886 (2010)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Liu, Z.H., Migórski, S., Zeng, S.D.: Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces. J. Differential Equations 263, 3989–4006 (2017)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Liu, Z.H., Zeng, S.D., Bai, Y.R.: Maximum principles for multi term space-time variable-order fractional diffusion equations and their applications. Fract. Calc. Appl. Anal. 19, 188–211 (2016)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Liu, Z.H., Zeng, S.D.: Differential variational inequalities in infinite Banach spaces. Acta. Math. Sci. 37, 26–32 (2017)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Liu, Z.H., Zeng, S.D., Motreanu, D.: Evolutionary problems driven by variational inequalities. J. Differential Equations 260, 6787–6799 (2016)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Liu, Z.H., Loi, N.V., Obukhovskii, V.: Existence and global bifurcation of periodic solutions to a class of differential variational inequalities. Int. J. Bifurcation Chaos 23, ID 1350125 (2013)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Liu, Z.H., Motreanu, D., Zeng, S.D.: Nonlinear evolutionary systems driven by mixed variational inequalities and its applications. Nonlinear Anal. 42, 409–421 (2018)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Liu, Z.H., Zeng, S.D., Motreanu, D.: Partial differential hemivariational inequalities. Adv. Nonlinear Anal. 7, 571–586 (2018)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Migórski, S., Zeng, S.D.: A class of differential hemivariational inequalities in Banach spaces. J. Glob Optim (2018)

  23. 23.

    Migórski, S., Zeng, S.D.: Mixed variational inequalities driven by fractional evolutionary equations. Acta Math. Sci. accepted (2018)

  24. 24.

    Migórski, S., Ochal, A., Sofonea, M.: Nonlinear Inclusions and Hemivariational Inequalities, Models and Analysis of Contact Problems Advances in Mechanics and Mathematics 26. Springer, New York (2013)

    Google Scholar 

  25. 25.

    Pang, J.S., Stewart, D.E.: Differential variational inequalities. Math. Program. 113, 345–424 (2008)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    Google Scholar 

  27. 27.

    Pang, J.S., Stewart, D.E.: Solution dependence on initial conditions in differential variational inequalities. Math. Program. 116, 429–460 (2009)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Samko, S.G., Marichev, A.A., Kilbas O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993)

    Google Scholar 

  29. 29.

    Shen, J.L., Pang, J.S.: Linear complementarity systems: Zeni states. SIAM J. Control Optim. 44, 1040–1066 (2005)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Su, C.H., Sehgal, V.M.: Some fixed point theorems for condensing multi functions in locally convex spaces. Proc. Natl. Acad. Sci. USA 50, 150–154 (1975)

    MATH  Google Scholar 

  31. 31.

    Van, N.T., Ke, T.D.: Asymptotic behavaior of solutions to a class of differential variational inequalities. Ann. Polon. Math. 114, 147–164 (2015)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Wang, J.R., Zhou, Y.: Existence and controllability results for fractional semilinear differential inclusions. Nonlinear Anal. 12, 3642–3653 (2011)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Wang, X., Huang, N.J.: A class of differential vector variational inequalities in finite dimensional spaces. J. Optim. Theory Appl. 162, 633–648 (2014)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Wang, X., Huang, N.J.: Differential vector variational inequalities in finite-dimensional spaces. J. Optim. Theory Appl. 158, 109–129 (2012)

    MathSciNet  Article  Google Scholar 

  35. 35.

    Wang, X., Qi, Y.W., Tao, C.Q., Xiao, Y.B.: A class of delay differential variational inequalities. J. Optim. Theory Appl. 172, 56–69 (2017)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Wang, X., Li, W., Li, X.S., Huang, N.J.: Stability for differential mixed variational inequalities. Optim. Lett. 8, 1873–1887 (2014)

    MathSciNet  Article  Google Scholar 

  37. 37.

    Wang, X., Tang, G.J., Li, X.S., Huang, N.J.: Differential quasi-variational inequalities in finite dimensional spaces. Optimization 64, 895–907 (2015)

    MathSciNet  Article  Google Scholar 

  38. 38.

    Zeidler, E.: Nonlinear Functional Analysisc and its Applications, vol. II/B, Nonlinear Monotone Operators. Springer, New York (1990)

    Google Scholar 

  39. 39.

    Zeng, S.D., Baleanu, D., Bai, Y.R., Wu, G.C.: Fractional differential equations of Caputo-Katugampola type and numerical solutions. Appl. Math. Comput. 315, 549–554 (2017)

    MathSciNet  MATH  Google Scholar 

  40. 40.

    Zeng, S.D., Migórski, S.: A class of time-fractional hemivariational inequalities with application to frictional contact problem. Commun. Nonlinear Sci. 56, 34–48 (2018)

    MathSciNet  Article  Google Scholar 

  41. 41.

    Zeng, S.D., Liu, Z.H., Migórski, S.: A class of fractional differential hemivariational inequalities with application to contact problem. Z. Angew. Math. Phys. 69(36), 23 (2018)

    MathSciNet  MATH  Google Scholar 

  42. 42.

    Zhou, Y., Jiao, F.: Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59, 1063–1077 (2010)

    MathSciNet  Article  Google Scholar 

Download references


The authors would like to express their thanks to the Editors and the Reviewers for their helpful comments and advices.

Author information



Corresponding author

Correspondence to Shengda Zeng.

Additional information

This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skł odowska-Curie grant agreement No. 823731 – CONMECH. It is supported by the National Science Center of Poland under Maestro Project No. UMO-2012/06/A/ST1/00262, and National Science Center of Poland under Preludium Project No. 2017/25/N/ST1/00611. The first author is also supported by Qinzhou University Project No. 2018KYQD06, and the International Project co-financed by the Ministry of Science and Higher Education of Republic of Poland under Grant No. 3792/GGPJ/H2020/2017/0.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Migórski, S., Zeng, S. A Class of Generalized Evolutionary Problems Driven by Variational Inequalities and Fractional Operators. Set-Valued Var. Anal 27, 949–970 (2019). https://doi.org/10.1007/s11228-018-0502-7

Download citation


  • Fractional partial differential variational inequalities
  • Caputo derivative
  • Knaster-Kuratowski-Mazurkiewicz theorem
  • Bohnenblust-Karlin fixed point principle
  • ϕ-pseudomonotonicity
  • Mixed quasi-variational inequalities

Mathematics Subject Classification (2010)

  • 47J20
  • 49J40
  • 35J88
  • 26A33
  • 34A08