Skip to main content
Log in

Progressive Decoupling of Linkages in Optimization and Variational Inequalities with Elicitable Convexity or Monotonicity

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

Algorithms for problem decomposition and splitting in optimization and the solving of variational inequalities have largely depended on assumptions of convexity or monotonicity. Here, a way of “eliciting” convexity or monotonicity is developed which can get around that limitation. It supports a procedure called the progressive decoupling algorithm, which is derived from the proximal point algorithm through passing to a partial inverse, localizing and rescaling. In the optimization setting, elicitability of convexity corresponds to a new and very general kind of second-order sufficient condition for a local minimum. Applications are thereby opened up to problem decomposition and splitting even in nonconvex optimization, moreover with augmented Lagrangians for subproblems assisting in the implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attouch, H., Briceño-Arias, L.M., Combettes, P.L.: A parallel splitting method for coupled monotone inclusions. SIAM J. Control Optim. 48, 3246–3270 (2010)

    Article  MathSciNet  Google Scholar 

  2. Aussel, D., Corvellec, J.-N., Lassonde, M.: Mean-value property and subdifferential criteria for lower semicontinuous functions. Trans. Amer. Math. Soc. 347, 4147–4161 (1995)

    Article  MathSciNet  Google Scholar 

  3. Bertsekas, D.P.: Convexification procedures and decomposition methods for nonconvex optimization problems. J. Optim. Theory Appl. 29, 169–197 (1979)

    Article  MathSciNet  Google Scholar 

  4. Daniilidis, A., Lemaréchal, C: On a primal-proximal heuristic in discrete optimization. Math. Programming A 104, 105–128 (2005)

    Article  MathSciNet  Google Scholar 

  5. Eckstein, J.: A simplified form of block-iterative operator splitting and an asynchronous algorithm resembling the multiblock ADMM. J. Optim. Theory Appl. 173, 155–182 (2017)

    Article  MathSciNet  Google Scholar 

  6. Eckstein, J., Bertsekas, D.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

    Article  MathSciNet  Google Scholar 

  7. Chen, G., Teboulle, M.: A proximal-based decomposition method for convex minimization problems. Math. Program. 64, 81–101 (1994)

    Article  MathSciNet  Google Scholar 

  8. Hare, W., Sagastizabel, C.: A redistributed proximal bundle method for nonconvex optimization. SIAM J. Optim. 20, 2442–2473 (2010)

    Article  MathSciNet  Google Scholar 

  9. Hong, M.G., Luo, Z.Q., Razaviyayn, M.: Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. SIAM J. Optim. 26, 33–364 (2016)

    Article  MathSciNet  Google Scholar 

  10. Iusem, A.N., Pennanen, T., Svaiter, B.F.: Inexact variants of the proximal point algorithm without monotonicity. SIAM J. Optim. 13, 1080–1097 (2003)

    Article  MathSciNet  Google Scholar 

  11. Lenoir, A., Mahey, P.: A survey on operator splitting and decomposition of convex programs. RAIRO —Operations Research 51, 17–41 (2017)

    Article  MathSciNet  Google Scholar 

  12. Luque, F.J.R.: Asymptotic convergence analysis of the proximal point algorithm. SIAM J. Control. Optim. 22, 277–293 (1984)

    Article  MathSciNet  Google Scholar 

  13. Mahey, P., Oualibouch, S., Pham, D.T.: Proximal decomposition on the graph of a maximal monotone mapping. SIAM J. Optim. 5, 454–466 (1995)

    Article  MathSciNet  Google Scholar 

  14. Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Mathematical J. 29, 341–346 (1962)

    Article  MathSciNet  Google Scholar 

  15. Mordukhovich, B.S., Analysis, Variational, Geneeralized Differentiation, I: Basic Theory, No. 330 in the series Grundlehren der Mathematischen Wissenschaften, Springer-Verlag (2006)

  16. Pennanen, T.: Local convergence of the proximal point algorithm and multiplier methods without monotonicity. Math. Oper. Res. 27, 170–191 (2002)

    Article  MathSciNet  Google Scholar 

  17. Poliquin, R.A.: Subgradient monotonicity and convex functions. Nonlinear Anal. Theory Methods Appl. 14, 385–398 (1990)

    Article  MathSciNet  Google Scholar 

  18. Poliquin, R.A., Rockafellar, R.T.: Tilt stability of a local minimum. SIAM J. Optim. 8, 287–289 (1998)

    Article  MathSciNet  Google Scholar 

  19. Rockafellar, R.T.: Convex analysis. Princeton University Press, Princeton (1970)

    Book  Google Scholar 

  20. Rockafellar, R.: On the maximal monotonicity of subdifferential mappings. Pacific J. Math. 33, 209–216 (1970)

    Article  MathSciNet  Google Scholar 

  21. Rockafellar, R.T.: Conjugate Duality Optimization, No 16 in Conference Board of Math. SIAM Publications, Sciences Series (1974)

    Book  Google Scholar 

  22. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Opt. 14, 877–898 (1976)

    Article  MathSciNet  Google Scholar 

  23. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1, 97–116 (1976)

    Article  MathSciNet  Google Scholar 

  24. Rockafellar, R.T.: Progressive decoupling of linkages in monotone variational inequalities and convex optimization, Proceedings of the Conference on Nonlinear Analysis and Convex Analysis, Chitose, Japan, 2017, submitted

  25. Rockafellar, R.T.: Variational convexity and local monotonicity of subgradient mappings, Vietnam Journal of Mathematics, submitted

  26. Rockafellar, R.T., Sun, J.: Solving monotone stochastic variational inequalities and complementarity problems by progressive hedging, Mathematical Programming, to appear in (2018)

  27. Rockafellar, R.T., Uryasev, S.: Minimizing buffered probability of exceedance by progressive hedging, Mathematical Programmming B, submitted

  28. Rockafellar, R.T., Wets, R.J.-B.: Scenarios and policy aggregation in optimization under uncertainty. Math. Oper. Res. 16, 119–147 (1991)

    Article  MathSciNet  Google Scholar 

  29. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, No. 317 in the series Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, 1997 third printing with corrections (2009)

  30. Rockafellar, R.T., Wets, R.J.-B.: Stochastic variational inequalities: single-stage to multistage. Mathematical Programming B 165, 331–360 (2017)

    Article  MathSciNet  Google Scholar 

  31. Spingarn, J.: Partial inverse of a monotone operator. Appl. Math. Optim. 10, 247–265 (1983)

    Article  MathSciNet  Google Scholar 

  32. Spingarn, J.: Applications of the method of partial inverses to convex programming: decomposition. Math. Program. 32, 199–121 (1985)

    Article  MathSciNet  Google Scholar 

  33. Watson, J.-P., Woodruff, D.L.: Progressive hedging innovations for a class of stochastic mixed-integer resource allocation problems. Comput. Manag. Sci. 8, 355–370 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Tyrrell Rockafellar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rockafellar, R.T. Progressive Decoupling of Linkages in Optimization and Variational Inequalities with Elicitable Convexity or Monotonicity. Set-Valued Var. Anal 27, 863–893 (2019). https://doi.org/10.1007/s11228-018-0496-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-018-0496-1

Keywords

Mathematics Subject Classification (2010)

Navigation