(Sub-)Differentiability of Probability Functions with Elliptical Distributions

  • W. van Ackooij
  • I. Aleksovska
  • M. Munoz-Zuniga


In this paper we investigate probability functions acting on nonlinear systems wherein the random vector can follow an elliptically symmetric distribution. We provide first and second order differentiability results as well as readily implementable formulæ. We also demonstrate that these formulæ can be readily employed within standard non-linear programming software through a set of illustrative numerical experiments.


Stochastic optimisation Probabilistic constraints Chance constraints Gradients of probability functions 

Mathematics Subject Classification (2010)

MSC 90C15 MSC 90C30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge the PGMO project “Optimisation sous contraintes de fiabilité de systèmes complexes - Application à l’ancrage des supports d’éolienne flottante” through which part of this work was funded. The authors would also like to thank two anonymous referees whose evaluation was greatly appreciated.


  1. 1.
    Arnold, T., Henrion, R., Möller, A., Vigerske, S.: A mixed-integer stochastic nonlinear optimization problem with joint probabilistic constraints. Pacific J Optim. 10, 5–20 (2014)MathSciNetMATHGoogle Scholar
  2. 2.
    Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Non-Linear Parametric Optimization. Birkhäuser, Basel (1982)CrossRefMATHGoogle Scholar
  3. 3.
    Clarke, F.H.: Optimisation and nonsmooth analysis. Classics in applied mathematics society for industrial and applied mathematics (1987)Google Scholar
  4. 4.
    Dentcheva, D.: Optimisation models with probabilistic constraints. In: Shapiro, A., Dentcheva, D., Ruszczyński, A. (eds.) Lectures on Stochastic Programming. Modeling and Theory, volume 9 of MPS-SIAM series on optimization, pp. 87–154. SIAM and MPS, Philadelphia (2009)Google Scholar
  5. 5.
    Fang, K., Kotz, S., Ng, K.W.: Symmetric Multivariate and Related Distributions, volume 36 of Monographs on Statistics and Applied Probability, 1st edition. Springer, Berlin (1990)CrossRefGoogle Scholar
  6. 6.
    Garnier, J., Omrane, A., Rouchdy, Y.: Asymptotic formulas for the derivatives of probability functions and their Monte Carlo estimations. Eur. J. Oper. Res. 198, 848–858 (2009)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Hantoute, A., Henrion, R., Pérez-Aros, P.: Subdifferential characterization of continuous probability functions under gaussian distribution. Submitted preprint:, pp. 1–27 (2017)
  8. 8.
    Henrion, D., Lasserre, J.-B., Loefberg, J.: Gloptipoly 3: moments, optimization and semidefinite programming. Optim. Method Softw. 24(4-5), 761–779 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Henrion, R., Möller, A.: Optimization of a continuous distillation process under random inflow rate. Comput. Math. Appl. 45, 247–262 (2003)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Henrion, R., Möller, A.: A gradient formula for linear chance constraints under Gaussian distribution. Math. Oper. Res. 37, 475–488 (2012)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Hunter, J.K., Nachtergaele, B.: Applied Analysis. World Scientific Publishing Company, Singapore (2001)CrossRefMATHGoogle Scholar
  12. 12.
    Kibzun, A.I., Uryas’ev, S.: Differentiability of probability function. Stoch. Anal Appl. 16, 1101–1128 (1998)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Küçükyavuz, S.: On mixing sets arising in chance-constrained programming. Math. Program. 132(1-2), 31–56 (2012)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Lasserre, J.-B.: Moments, Positive Polynomials and Their Applications, volume 1 of Imperial College Press Optimization, 1st edition. Imperial College Press, London (2009)CrossRefGoogle Scholar
  15. 15.
    Lebrun, R.: Contributions to Stochastic Dependence Modeling. PhD thesis, Universite Paris-Diderot - Paris VIÍ (2013)Google Scholar
  16. 16.
    Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim. 19, 674–699 (2008)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Marti, K.: Differentiation of probability functions: The transformation method. Comput. Math. Appl. 30, 361–382 (1995)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I. Basic Theory Volume 330 of Grundlehren Der Mathematischen Wissenschaften. Springer, Berlin (2006)CrossRefGoogle Scholar
  19. 19.
    Morgan, D.R., Eheart, J.W., Valocchi, A.J.: Aquifer remediation design under uncertainty using a new chance constraint programming technique. Water Resour. Res. 29, 551–561 (1993)CrossRefGoogle Scholar
  20. 20.
    Pflug, G., Weisshaupt, H.: Probability gradient estimation by set-valued calculus and applications in network design. SIAM J. Optim. 15, 898–914 (2005)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Prékopa, A.: Stochastic Programming. Kluwer, Dordrecht (1995)CrossRefMATHGoogle Scholar
  22. 22.
    Prékopa, A.: Probabilistic Programming. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming, volume 10 of Handbooks in Operations Research and Management Science, pp. 267–351. Elsevier, Amsterdam (2003)Google Scholar
  23. 23.
    Raik, E.: The differentiability in the parameter of the probability function and optimization of the probability function via the stochastic pseudogradient method (russian). Izvestiya Akad. Nayk Est. SSR, Phis. Math. 24(1), 3–6 (1975)MathSciNetMATHGoogle Scholar
  24. 24.
    Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, volume 317 of Grundlehren der mathematischen Wissenschaften, 3rd edition. Springer, Berlin (2009)Google Scholar
  25. 25.
    Royset, J.O., Polak, E.: Implementable algorithm for stochastic optimization using sample average approximations. J. Optim. Theory Appl. 122(1), 157–184 (2004)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Royset, J.O., Polak, E.: Extensions of stochastic optimization results to problems with system failure probability functions. J. Optim. Theory Appl. 133(1), 1–18 (2007)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Ryoo, H.S., Sahinidis, N.V.: Global optimization of nonconvex nlps and minlps with applications in process design. Comput. Chem. Eng. 19(5), 551–566 (1995)CrossRefGoogle Scholar
  28. 28.
    Uryas’ev, S.: Derivatives of probability functions and integrals over sets given by inequalities. J. Comput. Appl. Math. 56(1-2), 197–223 (1994)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Uryas’ev, S.: Derivatives of probability functions and some applications. Ann. Oper. Res. 56, 287–311 (1995)MathSciNetCrossRefGoogle Scholar
  30. 30.
    van Ackooij, W.: Decomposition approaches for block-structured chance-constrained programs with application to hydro-thermal unit commitment. Math. Meth. Oper. Res. 80(3), 227–253 (2014)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    van Ackooij, W., Henrion, R.: Gradient formulae for nonlinear probabilistic constraints with Gaussian and Gaussian-like distributions. SIAM J. Optim. 24(4), 1864–1889 (2014)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    van Ackooij, W., Henrion, R.: (sub-) gradient formulae for probability functions of random inequality systems under gaussian distribution. SIAM J. Uncertain. Quantif. 5(1), 63–87 (2017)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    van Ackooij, W., Henrion, R., Möller, A., Zorgati, R.: On joint probabilistic constraints with Gaussian coefficient matrix. Oper. Res. Lett. 39, 99–102 (2011)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    van Ackooij, W., Henrion, R., Möller, A., Zorgati, R.: Joint chance constrained programming for hydro reservoir management. Optim. Eng. 15, 509–531 (2014)MathSciNetMATHGoogle Scholar
  35. 35.
    van Ackooij, W., Malick, J.: Second-order differentiability of probability functions. Optim. Lett. 11(1), 179–194 (2017)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    van Ackooij, W., Minoux, M.: A characterization of the subdifferential of singular Gaussian distribution functions. Set Valued Var. Anal. 23(3), 465–483 (2015)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Wachter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Wendt, M., Li, P., Wozny, G.: Nonlinear chance-constrained process optimization under uncertainty. Ind. Eng. Chem. Res. 41(15), 3621–3629 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.EDF R&D, OSIRISPalaiseauFrance
  2. 2.IFP Energies nouvellesRueil MalmaisonFrance

Personalised recommendations