Skip to main content
Log in

About Subtransversality of Collections of Sets

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

We provide dual sufficient conditions for subtransversality of collections of sets in an Asplund space setting. For the convex case, we formulate a necessary and sufficient dual criterion of subtransversality in general Banach spaces. Our more general results suggest an intermediate notion of subtransversality, what we call weak intrinsic subtransversality, which lies between intrinsic transversality and subtransversality in Asplund spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka–Łojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Azé, D.: A survey on error bounds for lower semicontinuous functions. Proc. 2003 MODE-SMAI Conf. ESAIM Proc. 13, 1–17 (2003)

    MathSciNet  MATH  Google Scholar 

  3. Bakan, A., Deutsch, F., Li, W.: Strong CHIP, normality, and linear regularity of convex sets. Trans. Amer. Math. Soc. 357(10), 3831–3863 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauschke, H.H., Borwein, J.M.: On the convergence of von Neumann’s alternating projection algorithm for two sets. Set-Valued Anal. 1(2), 185–212 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and the method of alternating projections: Theory. Set-valued Var. Anal. 21(3), 431–473 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and the method of alternating projections: Applications. Set-valued Var. Anal. 21(3), 475–5013 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis. Springer, New York (2005)

    MATH  Google Scholar 

  9. Bregman, L.M.: The method of successive projection for finding a common point of convex sets. Sov. Math., Dokl. 6, 688–692 (1965)

    MATH  Google Scholar 

  10. Burke, J.V., Deng, S.: Weak sharp minima revisited. I. Basic theory. Control Cybernet. 31(3), 439–469 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Burke, J.V., Deng, S.: Weak sharp minima revisited. II. Application to linear regularity and error bounds. Math. Program. 104(2-3), 235–261 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Burke, J.V., Ferris, M.C.: Weak sharp minima in mathematical programming. SIAM J. Control Optim. 31(5), 1340–1359 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Clarke, F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Graduate Texts in Mathematics. Springer, New York (1998)

    Google Scholar 

  14. De Giorgi, E., Marino, A., Tosques, M.: Evolution problerns in in metric spaces and steepest descent curves. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 68 (3), 180–187 (1980). In Italian (English translation: Ennio De Giorgi, Selected Papers, Springer, Berlin 2006, 527–533)

    MathSciNet  MATH  Google Scholar 

  15. Dolecki, S.: Tangency and differentiation: some applications of convergence theory. Ann. Mat. Pura Appl. 130(4), 223–255 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. A View from Variational Analysis, 2 edn. Springer Series in Operations Research and Financial Engineering. Springer, New York (2014)

    Google Scholar 

  17. Drusvyatskiy, D., Ioffe, A.D., Lewis, A.S.: Transversality and alternating projections for nonconvex sets. Found. Comput. Math. 15(6), 1637–1651 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fabian, M.: Subdifferentiability and trustworthiness in the light of a new variational principle of Borwein and Preiss. Acta Univ. Carolinae 30, 51–56 (1989)

    MathSciNet  MATH  Google Scholar 

  20. Fabian, M.J., Henrion, R., Kruger, A.Y., Outrata, J.V.: Error bounds: necessary and sufficient conditions. Set-valued Var. Anal. 18(2), 121–149 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guillemin, V., Pollack, A.: Differential Topology. Prentice-Hall, Inc., Englewood Cliffs (1974)

    MATH  Google Scholar 

  22. Gubin, L.G., Polyak, B.T., Raik, E.V.: The method of projections for finding the common point of convex sets. USSR Comput. Math. Math. Phys. 7(6), 1–24 (1967)

    Article  Google Scholar 

  23. Hesse, R., Luke, D.R.: Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems. SIAM J. Optim. 23(4), 2397–2419 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hirsch, M.: Differential Topology. Springer Verlag, New York (1976)

    Book  MATH  Google Scholar 

  25. Ioffe, A.D.: Approximate subdifferentials and applications. III. The metric theory. Mathematika 36(1), 1–38 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ioffe, A.D.: Metric regularity and subdifferential calculus. Russian Math. Surveys. 55, 501–558 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ioffe, A.D.: Metric regularity – a survey. Part I. Theory. J. Aust. Math. Soc. 101(2), 188–243 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ioffe, A.D.: Metric regularity – a survey. Part II. Appl. J. Aust. Math. Soc. 101 (3), 376–417 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ioffe, A.D., Tikhomirov, V.M.: Theory of Extremal Problems, Studies in Mathematics and its Applications, vol. 6. North-Holland Publishing Co., Amsterdam (1979)

    Google Scholar 

  30. Jameson, G.J.O.: The duality of pairs of wedges. Proc. London Math. Soc. 24, 531–547 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  31. Klatte, D., Li, W.: Asymptotic constraint qualifications and global error bounds for convex inequalities. Math. Program. 84(1), 137–160 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kruger, A.Y.: On Fréchet subdifferentials. J. Math. Sci. 116(3), 3325–3358 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kruger, A.Y.: Stationarity and regularity of set systems. Pac. J. Optim. 1(1), 101–126 (2005)

    MathSciNet  MATH  Google Scholar 

  34. Kruger, A.Y.: About regularity of collections of sets. Set-Valued Anal. 14(2), 187–206 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kruger, A.Y.: About stationarity and regularity in variational analysis. Taiwanese J. Math. 13(6A), 1737–1785 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kruger, A.Y.: Error bounds and metric subregularity. Optimization 64(1), 49–79 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kruger, A.Y.: About intrinsic transversality of pairs of sets. Preprint, arXiv:1701.08246 (2017)

  38. Kruger, A.Y., Luke, D.R., Thao, N.H.: Set regularities and feasibility problems. Math. Program. doi:10.1007/s10107-016-1039-x (2017)

  39. Kruger, A.Y., Thao, N.H.: About uniform regularity of collections of sets. Serdica Math. J. 39, 287–312 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Kruger, A.Y., Thao, N.H.: Quantitative characterizations of regularity properties of collections of sets. J. Optim. Theory Appl. 164(1), 41–67 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kruger, A.Y., Thao, N.H.: Regularity of collections of sets and convergence of inexact alternating projections. J. Convex Anal. 23(3), 823–847 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Lewis, A.S., Luke, D.R., Malick, J.: Local linear convergence of alternating and averaged projections. Found. Comput. Math. 9(4), 485–513 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lewis, A.S., Malick, J.: Alternating projections on manifolds. Math. Oper. Res. 33(1), 216–234 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Li, C., Ng, K.F., Pong, T.K.: The SECQ, linear regularity, and the strong CHIP for an infinite system of closed convex sets in normed linear spaces. SIAM J. Optim. 18(2), 643–665 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Luke, D.R., Thao, N.H., Teboulle, M.: Necessary conditions for linear convergence of Picard iterations and application to alternating projections. Preprint, arXiv:1704.08926 (2017)

  46. Mordukhovich, B.S.: Approximation Methods in Problems of Optimization and Control. Nauka. In Russian (1988)

  47. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory II Applications. Grundlehren der mathematischen Wissenschaften. Springer-Verlag, New York (2006)

    Google Scholar 

  48. Ng, K.F., Yang, W.H.: Regularities and their relations to error bounds. Math. Program. 99(3), 521–538 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ngai, H.V., Théra, M.: Metric inequality, subdifferential calculus and applications. Set-Valued Anal. 9(1–2), 187–216 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  50. Noll, D., Rondepierre, A.: On local convergence of the method of alternating projections. Found. Comput. Math. 16(2), 425–455 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. Penot, J.P.: Calculus without Derivatives. Graduate Texts in Mathematics. Springer, New York (2013)

    Book  Google Scholar 

  52. Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability Lecture Notes in Mathematics, 2nd edn., vol. 1364. Springer-Verlag, Berlin (1993)

    Google Scholar 

  53. Rockafellar, R.T., Wets, R.J.: Variational Analysis. Grundlehren Der Mathematischen Wissenschaften. Springer-Verlag, Berlin (1998)

    Google Scholar 

  54. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing Co. Inc., River Edge (2002)

    Book  MATH  Google Scholar 

  55. Zheng, X.Y., Ng, K.F.: Linear regularity for a collection of subsmooth sets in Banach spaces. SIAM J. Optim. 19(1), 62–76 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zheng, X.Y., Wei, Z., Yao, J.C.: Uniform subsmoothness and linear regularity for a collection of infinitely many closed sets. Nonlinear Anal. 73(2), 413–430 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referees for the careful reading of the manuscript and constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Y. Kruger.

Additional information

Dedicated to Professor Michel Théra on the occasion of his 70th birthday

AYK was supported by Australian Research Council, project DP160100854. DRL was supported in part by German Israeli Foundation Grant G-1253-304.6 and Deutsche Forschungsgemeinschaft Research Training Grant 2088 TP-B5. NHT was supported by German Israeli Foundation Grant G-1253-304.6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruger, A.Y., Luke, D.R. & Thao, N.H. About Subtransversality of Collections of Sets. Set-Valued Var. Anal 25, 701–729 (2017). https://doi.org/10.1007/s11228-017-0436-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-017-0436-5

Keywords

Mathematics Subject Classification (2010)

Navigation