Symbolic Computation with Monotone Operators


We consider a class of monotone operators which are appropriate for symbolic representation and manipulation within a computer algebra system. Various structural properties of the class (e.g., closure under taking inverses, resolvents) are investigated as well as the role played by maximal monotonicity within the class. In particular, we show that there is a natural correspondence between our class of monotone operators and the subdifferentials of convex functions belonging to a class of convex functions deemed suitable for symbolic computation of Fenchel conjugates which were previously studied by Bauschke & von Mohrenschildt and by Borwein & Hamilton. A number of illustrative examples utilizing the introduced class of operators are provided including computation of proximity operators, recovery of a convex penalty function associated with the hard thresholding operator, and computation of superexpectations, superdistributions and superquantiles with specialization to risk measures.

This is a preview of subscription content, access via your institution.


  1. 1.

    Bailey, D.H., Borwein, J.M.: Mathematics by Experiment: Plausible Reasoning in the 21st century. A K Peters Ltd, Natick, MA (2003)

  2. 2.

    Bailey, D.H., Borwein, J.M.: Experimental Mathematics: examples, methods and implications. Notices Amer. Math. Soc. 52(5), 502–514 (2005)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Bailey, D.H., Borwein, J.M., Calkin, N.J., Girgensohn, R., Luke, D.R., Moll, V.H.: Experimental Mathematics in Action. A K Peters Ltd, Natick (2007)

    Google Scholar 

  4. 4.

    Bailey, D.H., Borwein, J.M., Girgensohn, R.: Experimentation in Mathematics: Computational Paths to Discovery. A K Peters Ltd, Natick (2003)

    Google Scholar 

  5. 5.

    Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer Science & Business Media (2011)

  6. 6.

    Bauschke, H.H., von Mohrenschildt, M.: Fenchel conjugates and subdifferentials in Maple. Tech. rep. (1997)

  7. 7.

    Bauschke, H.H., von Mohrenschildt, M.: Symbolic computation of Fenchel conjugates. ACM Commun. Comput. Algebra 40(1), 18–28 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Bayram, I.: Penalty functions derived from monotone mappings. IEEE Signal Process. Lett. 22(3), 264–268 (2015)

    Article  Google Scholar 

  9. 9.

    Borwein, J.M., Hamilton, C.H.: Symbolic Fenchel conjugation. Math. Program. 116(1-2), 17–35 (2009). the accompanying SCAT Maple package is available online at

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Lauster, F., Luke, D.R., Tam, M.K.: Maple worksheets for computational examples in Symbolic computation with monotone operators. Available online together with the SCAT package at

  11. 11.

    Borwein, J.M., Vanderwerff, J.D.: Convex Functions: Constructions, Characterizations and Counterexamples, vol. 32. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  12. 12.

    Burachik, R., Iusem, A.N.: Set-valued mappings and enlargements of monotone operators, vol. 8. Springer Science & Business Media (2007)

  13. 13.

    Dentcheva, D., Martinez, G.: Two-stage stochastic optimization problems with stochastic ordering constraints on the recourse. Eur. J. Oper. Res 219, 1–8 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Gardiner, B., Lucet, Y.: Conjugate of convex piecewise linear-quadratic bivariate functions. Comput. Optim. Appl. 58, 249–272 (2014). doi:10.1007/s10589-013-9622-z

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Hamilton, C.H.: Symbolic Convex Analysis. Master’s thesis, Simon Fraser University (2005)

  16. 16.

    Lucet, Y.: Faster than the fast Legendre transform, the linear-time Legendre transform. Numer. Algorithms 16(2), 171–185 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Lucet, Y.: What shape is your conjugate? A survey of computational convex analysis and its applications. SIAM Rev. 52(3), 505–542 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Niculescu, C., Persson, L.E.: Convex Functions and their Applications: A Contemporary Approach. Springer Science & Business Media (2006)

  19. 19.

    Ogryczak, W., Ruszczyński, A.: Dual stochastic dominance and related mean-risk models. SIAM J. Optim. 13, 60–78 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Rockafellar, R., Royset, J.: Random variables, monotone relations, and convex analysis. Math. Program. (2014) doi:10.1007/s10107-014-0801-1

  21. 21.

    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Google Scholar 

  22. 22.

    Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pacific J. Math. 33, 209–216 (1970)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Rockafellar, R.T., Wets, R.J.: Variational Analysis. Grundlehren Math. Wiss. Springer-Verlag, Berlin (1998)

    Google Scholar 

  24. 24.

    Vakil, N.: Real Analysis Through Modern Infinitesimals. Encyclopedia of Mathematics and its Applications. Cambridge University Press, New York (2011)

    Google Scholar 

Download references


DRL was supported in part by Deutsche Forschungsgemeinschaft Collaborative Research Center SFB755. MKT was supported by Deutsche Forschungsgemeinschaft RTG2088.

Author information



Corresponding author

Correspondence to Matthew K. Tam.

Additional information

Dedicated to the memory of Jonathan Michael Borwein.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lauster, F., Luke, D.R. & Tam, M.K. Symbolic Computation with Monotone Operators. Set-Valued Var. Anal 26, 353–368 (2018).

Download citation


  • Monotone operator
  • Symbolic computation
  • Experimental mathematics

Mathematics Subject Classification (2010)

  • 47H05
  • 47N10
  • 68W30