The Limiting Normal Cone to Pointwise Defined Sets in Lebesgue Spaces

Abstract

We consider subsets of Lebesgue spaces which are defined by pointwise constraints. We provide formulas for corresponding variational objects (tangent and normal cones). Our main result shows that the limiting normal cone is always dense in the Clarke normal cone and contains the convex hull of the pointwise limiting normal cone. A crucial assumption for this result is that the underlying measure is non-atomic, and this is satisfied in many important applications (Lebesgue measure on subsets of \(\mathbb {R}^{d}\) or the surface measure on hypersurfaces in \(\mathbb {R}^{d}\)). Finally, we apply our findings to an optimization problem with complementarity constraints in Lebesgue spaces.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Aubin, J.-P., Frankowska, H.: Set-valued analysis. Modern Birkhäuser Classics. Birkhäuser Boston Inc., Boston, MA, 2009. ISBN 978-0-8176-4847-3. Reprint of the 1990 edition

  2. 2.

    Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Google Scholar 

  3. 3.

    Ding, C., Sun, D., Ye, J.J.: First order optimality conditions for mathematical programs with semidefinite cone complementarity constraints. Math. Program. 147 (1-2), 539–579 (2014). doi:10.1007/s10107-013-0735-z

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Flegel, M., Kanzow, C.: A direct proof for M-stationarity under MPEC-GCQ for mathematical programs with equilibrium constraints. In: Dempe, S, Kalashnikov, V. (eds.) Optimization with Multivalued Mappings, volume 2 of Springer Optimization and Its Applications, pp 111–122. Springer, New York (2006), 10.1007/0-387-34221-4_6

  5. 5.

    Geremew, W., Mordukhovich, B.S., Nam, N.M.: Coderivative calculus and metric regularity for constraint and variational systems. Nonlinear Anal. Theory Methods Appl. 70(1), 529–552 (2009). doi:10.1016/j.na.2007.12.025

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Hiai, F., Umegaki, H. : Integrals, conditional expectations, and martingales of multivalued functions. J. Multivar. Anal. 7(1), 149–182 (1977). doi:10.1016/0047-259X(77)90037-9

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Mehlitz, P., Wachsmuth, G.: Weak and strong stationarity in generalized bilevel programming and bilevel optimal control. Optimization 65(5), 907–935 (2016). doi:10.1080/02331934.2015.1122007

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. Springer-Verlag, Berlin (2006)

    Google Scholar 

  9. 9.

    Mordukhovich, B.S., Sagara, N.: Subdifferentials of nonconvex integral functionals in Banach spaces with applications to stochastic dynamic programming. to appear in J. Convex Anal. (2016). arXiv:1508.02239

  10. 10.

    Olech, C.: The Lyapunov Theorem: Its extensions and applications, volume 1446 of Lecture Notes in Mathematics, pp 84–103. Springer, Berlin (1990)

    Google Scholar 

  11. 11.

    Papageorgiou, N.S., Kyritsi-Yiallourou, S.T.: Handbook of applied analysis, volume 19 of Advances in Mechanics and Mathematics. Springer, New York (2009). ISBN 978-0-387-78906-4. doi:10.1007/b120946

  12. 12.

    Rockafellar, R. T.: Integrals which are convex functionals. Pacific J. Math. 24 (3), 525–539 (1968)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Wachsmuth, G.: Mathematical Programs with Complementarity Constraints in Banach Spaces. J. Optim. Theory Appl. 166, 480–507 (2015). doi:10.1007/s10957-014-0695-3

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Wachsmuth, G.: Strong stationarity for optimization problems with complementarity constraints in absence of polyhedricity. Set-Valued and Variational Analysis (2016). doi:10.1007/s11228-016-0370-y

    MATH  Google Scholar 

  15. 15.

    Ye, J.J.: Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints. J. Math. Anal. Appl. 307, 350–369 (2005). doi:10.1016/j.jmaa.2004.10.032

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Patrick Mehlitz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mehlitz, P., Wachsmuth, G. The Limiting Normal Cone to Pointwise Defined Sets in Lebesgue Spaces. Set-Valued Var. Anal 26, 449–467 (2018). https://doi.org/10.1007/s11228-016-0393-4

Download citation

Keywords

  • Decomposable set
  • Lebesgue spaces
  • Limiting normal cone
  • Mathematical program with complementarity constraint
  • Measurability

Mathematics Subject Classification 2010

  • 49J53
  • 90C30