Set-Valued and Variational Analysis

, Volume 26, Issue 3, pp 431–447 | Cite as

Algorithmic Construction of the Subdifferential from Directional Derivatives

  • Charles AudetEmail author
  • Warren Hare


The subdifferential of a function is a generalization for nonsmooth functions of the concept of gradient. It is frequently used in variational analysis, particularly in the context of nonsmooth optimization. The present work proposes algorithms to reconstruct a polyhedral subdifferential of a function from the computation of finitely many directional derivatives. We provide upper bounds on the required number of directional derivatives when the space is ℝ1 and ℝ2, as well as in ℝ n where subdifferential is known to possess at most three vertices.


Subdifferential Directional derivative Polyhedral construction Geometric probing 

Mathematics Subject Classification (2010)

Primary; 52B12 65K15 Secondary; 49M37 90C30 90C56 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Audet, C., Dennis, J.E. Jr.: Analysis of generalized pattern searches. SIAM J. Optim. 13(3), 889–903 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Audet, C., Dennis, J.E. Jr.: Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17(1), 188–217 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bagirov, A.M.: Continuous subdifferential approximations and their applications, vol. 115. Optimization and related topics, 2 (2003)Google Scholar
  4. 4.
    Bagirov, A.M., Karasözen, B., Sezer, M.: Discrete gradient method: derivative-free method for nonsmooth optimization. J. Optim. Theory Appl. 137(2), 317–334 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bernstein, H.J.: Determining the shape of a convex n-sided polygon by using 2n + k tactile probes. Inf. Process. Lett. 22(5), 255–260 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cole, R., Yap, C.K.: Shape from probing. Journal of Algorithms 8(1), 19–38 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Demyanov, V.F., Rubinov, A.M.: Constructive Nonsmooth Analysis, vol. 7. Verlag Peter Lang, Frankfurt (1995)zbMATHGoogle Scholar
  8. 8.
    Dobkin, D., Edelsbrunner, H., Yap, C.K.: Probing convex polytopes. In: Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing, STOC ’86, pp. 424–432. ACM, New York (1986)Google Scholar
  9. 9.
    Finkel, D.E., Kelley, C.T.: Convergence analysis of the DIRECT algorithm. Technical Report. CRSC-TR04-28 Center for Research in Scientific Computation (2004)Google Scholar
  10. 10.
    Finkel, D.E., Kelley, C.T.: Convergence analysis of sampling methods for perturbed lipschitz functions. Pacific Journal of Optimization 5(2), 339–350 (2009)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Hare, W., Nutini, J.: A derivative-free approximate gradient sampling algorithm for finite minimax problems. Comput. Optim. Appl. 56(1), 1–38 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hare, W., Macklem, M.: Derivative-free optimization methods for finite minimax problems. Optimization Methods and Software, iFirst, 1–13 (2011)Google Scholar
  13. 13.
    Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. Springer, Berlin (1993). Advanced theory and bundle methodszbMATHGoogle Scholar
  14. 14.
    Imiya, A., Sato, K.: Shape from silhouettes in discrete space. In: Brimkov, E.V., Barneva, P.R. (eds.) Digital Geometry Algorithms: Theoretical Foundations and Applications to Computational Imaging, pp. 323–358. Springer, Netherlands, Dordrecht (2012)CrossRefGoogle Scholar
  15. 15.
    Kiwiel, K.C.: A nonderivative version of the gradient sampling algorithm for nonsmooth nonconvex optimization. SIAM J. Optim. 20(4), 1983–1994 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lindenbaum, M., Bruckstein, A.: Parallel strategies for geometric probing. Journal of Algorithms 13(2), 320–349 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, volume 317 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1998)Google Scholar
  18. 18.
    Romanik, K.: Geometric probing and testing - a survey. Technical Report 95-42, DIMACS Technical Report (1995)Google Scholar
  19. 19.
    Shuo-Yen, R.L.: Reconstruction of polygons from projections. Inf. Process. Lett. 28(5), 235–240 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Skiena, S.S.: Problems in geometric probing. Algorithmica 4(1), 599–605 (1989)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Tiwary, H.R.: Complexity of Some Polyhedral Enumeration Problems. PhD Thesis. Universität des Saarlandes, Germany (2008)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Département de mathématiques et génie industrielÉcole Polytechnique de MontréalMontréalCanada
  2. 2.Mathematics, Irving K. Barber SchoolUniversity of British ColumbiaKelownaCanada

Personalised recommendations