Advertisement

Set-Valued and Variational Analysis

, Volume 25, Issue 2, pp 265–296 | Cite as

Variational Analysis of the Ky Fan k-norm

  • Chao DingEmail author
Article

Abstract

In this paper, we will study some variational properties of the Ky Fan k-norm 𝜃 = ∥⋅∥(k) of matrices, which are closed related to a class of basic nonlinear optimization problems involving the Ky Fan k-norm. In particular, for the basic nonlinear optimization problems, we will introduce the concept of nondegeneracy, strict complementarity and the critical cones associated with the generalized equations. Finally, we present the explicit formulas of the conjugate function of the parabolic second order directional derivative of 𝜃, which will be referred to as the sigma term of the second order optimality conditions. The results obtained in this paper provide the necessary theoretical foundations for future work on sensitivity and stability analysis of the nonlinear optimization problems involving the Ky Fan k-norm.

Keywords

Ky Fan k-norm Nondegeneracy Critical cone Second order tangent sets 

Mathematics Subject Classification (2010)

65K10 90C25 90C33 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bhatia, R.: Matrix Analysis. Springer Science & Business Media (1997)Google Scholar
  2. 2.
    Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)CrossRefzbMATHGoogle Scholar
  3. 3.
    Boyd, S., Diaconis, P., Xiao, L.: Fastest mixing markov chain on a graph. SIAM Rev. 46, 667–689 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Candès, E., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9, 717–772 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Candès, E., Tao, T.: The power of convex relaxation: near-optimal matrix completion. IEEE Trans. Inf. Theory 56, 2053–2080 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Candès, E., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58, 11 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chandrasekaran, V., Sanghavi, S., Parrilo, P.A., Willsky, A.: Rank-sparsity incoherence for matrix decomposition. SIAM J. Optim. 21, 572–596 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chu, M., Funderlic, R., Plemmons, R.: Structured low rank approximation. Linear Algebra Appl. 366, 157–172 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)zbMATHGoogle Scholar
  10. 10.
    Ding, C., Sun, D., Toh, K.-C.: An introduction to a class of matrix cone programming. Math. Program. 144, 141–179 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dobrynin, V.: On the rank of a matrix associated with a graph. Discret. Math. 276, 169–175 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Facchinei, F., Pang, J.S. (eds.): Finite-dimensional variational inequalities and complementarity problems, vol. 1. Springer Science & Business Media (2003)Google Scholar
  13. 13.
    Fan, K.: On a theorem of Weyl concerning eigenvalues of linear transformations. Proc. Natl. Acad. Sci. U. S. A. 35, 652–655 (1949)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gao, Y.Y., Sun, D.: A majorized penalty approach for calibrating rank constrained correlation matrix problems. Preprint available at http://www.math.nus.edu.sg/∼matsundf/MajorPen_May5.pdf (2010)
  15. 15.
    Greenbaum, A., Trefethen, L.N.: GMRES/CR and Arnoldi/Lanczos as matrix approximation problems. SIAM J. Sci. Comput. 15, 359–368 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kotlov, A., Lovász, L., Vempala, S.: The Colin de Verdière number and sphere representations of a graph. Combinatorica 17, 483–521 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization: Regularity, Calculus, Methods, and Applications. Kluwer Academic Publishers (2002)Google Scholar
  18. 18.
    Lancaster, P.: On eigenvalues of matrices dependent on a parameter. Numer. Math. 6, 377–387 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lewis, A.S., Sendov, H.S.: Nonsmooth analysis of singular values. Part II: applications. Set-Valued Analysis 13, 243–264 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25, 1–7 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Miao, W.M., Sun, D., Pan, S.: A rank-corrected procedure for matrix completion with fixed basis coefficients. Preprint available at arXiv:1210.3709 (2012)
  22. 22.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory. Springer, Berlin (2006)Google Scholar
  23. 23.
    Mordukhovich, B.S., Rockafellar, R.T., Sarabi, M.E.: Characterizations of full stability in constrained optimization. SIAM J. Optim. 23, 1810–1849 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Moreau, J.-J.: Proximité et dualité dans un espace hilbertien. Bulletin de la Société, Mathématique de France 93, 1067–1070 (1965)zbMATHGoogle Scholar
  25. 25.
    von Neumann, J.: Some matrix-inequalities and metrization of matric-space, Tomsk University Review 1, 286–300 (1937). In: Collected Works, vol. IV, pp. 205–218. Pergamon, Oxford (1962)Google Scholar
  26. 26.
    Overton, M., Womersley, R.: Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices. Math. Program. 62, 321–357 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52, 471–501 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Robinson, S.M.: First order conditions for general nonlinear optimization. SIAM J. Appl. Math. 30, 597–607 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Robinson, S.M.: Local structure of feasible sets in nonlinear programming. II: nondegeneracy. Mathematical Programming Study 22, 217–230 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Robinson, S.M.: Local structure of feasible sets in nonlinear programming. III: stability and sensitivity. Mathematical Programming Study 30, 45–66 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press (1970)Google Scholar
  32. 32.
    Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (1998)CrossRefzbMATHGoogle Scholar
  33. 33.
    Sun, D.: The strong second-order sufficient condition and constraint nondegeneracy in nonlinear semidefinite programming and their implications. Math. Oper. Res. 31, 761–776 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Toh, K.-C.: GMRES Vs. ideal GMRES. SIAM J. Matrix Anal. Appl. 18, 30–36 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Toh, K.-C., Trefethen, L.N.: The Chebyshev polynomials of a matrix. SIAM J. Matrix Anal. Appl. 20, 400–419 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Torki, M.: Second-order directional derivatives of all eigenvalues of a symmetric matrix. Nonlinear Anal. 46, 1133–1150 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Watson, G.A.: Linear best approximation using a class of polyhedral norms. Numerical Algorithms 2, 321–336 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Wright, J., Ma, Y., Ganesh, A., Rao, S.: Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization. In: Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C. (eds.) Advances in Neural Information Processing Systems 22 (2009)Google Scholar
  39. 39.
    Wu, B., Ding, C., Sun, D., Toh, K.-C.: On the Moreau–Yosida regularization of the vector k-norm related functions. SIAM J. Optim. 24, 766–794 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Zhang, L., Zhang, N., Xiao, X.: On the second-order directional derivatives of singular values of matrices and symmetric matrix-valued functions. Set-Valued and Variational Analysis 21(3), 557–586 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Zowe, J., Kurcyusz, S.: Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5, 49–62 (1979)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institute of Applied Mathematics, Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina

Personalised recommendations