Abstract
This paper studies second-order optimality conditions for a semilinear elliptic optimal control problem with mixed pointwise constraints. We show that in some cases, there is a common critical cone under which the second-order necessary and sufficient optimality conditions for the problem are valid. Our results approach to a theory of no-gap second-order conditions. In order to obtain such results, we reduce the problem to a special mathematical programming problem with polyhedricity constraint set. We then use some tools of variational analysis and techniques of semilinear elliptic equations to analyze second-order conditions.
This is a preview of subscription content, access via your institution.
References
Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)
Aubin, J.-P., Frankowska, H.: Set-valued Analysis. Birkhäuser (1990)
Bayen, T., Bonnans, J.F., Silva, F.J.: Characterization of locall quadractic growth for strong minima in the optimal control of semilinear elliptic equations. Trans. Amer. Math. Soc. 366, 2063–2087 (2013)
Bonnans, J.F.: Second-order analysis for control constrained optimal control problems of semilinear elliptic systems. Appl. Math. Optim. 38, 303–325 (1998)
Bonnans, J.F., Zidani, H.: Optimal control problem with partially polyhedric constraints. SIAM J. Control Optim. 37, 1726–1741 (1999)
Bonnans, J.F., Shapiro, A.: Perturbation analysis of optimization problems. Springer (2000)
Bonnans, J.F., Hermant, A.: No-gap second-order optimality conditions for optimal control problems with a single state constraint and control. Math. Program. Ser. B 117, 21–50 (2009)
Bonnans, J.F., Hermant, A.: Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints. Ann. I. H. Poincar - AN 26, 561–598 (2009)
Brezis, H.: Problèmes unilatéraux. J. Math. Pures Appl. 51, 1–168 (1972)
Casas, E.: Second order analysis for bang-bang control problems of PDEs. SIAM J. Control Optim. 50, 2355–2372 (2012)
Casas, E., Reyes, J. C.D.L., Tröltzsch, F.: Sufficient second-order optiMality conditions for semilinear control problems with pointwise state constraints. SIAM J. Optim. 19, 616–643 (2008)
Casas, E., Tröltzsch, F.: First- and second-order optiMality conditions for a class of optimal control problems with quasilinear elliptic equations, SIAM. J. Control Optim. 48, 688–718 (2009)
Casas, E., Mateos, M.: Second order optiMality conditions for semilinear elliptic control problems with finitely many state constraints. SIAM J. Control Optim. 40, 1431–1454 (2002)
Cominetti, R.: Metric regularity, tangent sets, and second-order optimality conditions. Appl. Math. Optim. 21, 265-287 (1990)
Clarke, F.H.: Optimization and nonsmooth analysis. SIAM, Philadelphia (1990)
Dacorogna, B.: Direct methods in calculus of variations. Springer Science+Business Media LLC (2008)
Giner, E.: Etudes des Fonctionnelles Integrables. Thesis, Université de Pau, France (1985)
Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)
Kien, B.T., Nhu, V.H.: Second-order necessary optimality conditions for a class of semilinear elliptic optimal control problems with mixed pointwise constraints. SIAM J. Control Optim. 52, 1166–1202 (2014)
Meyer, C., Tröltzsch, F.: On an elliptic optimal control problem with pointwise mixed control-state constraints. In: Seeger, A. (ed.) Recent Advances in Optimization, volume 563 of Lecture Notes in Economics and Mathematical Systems, p 187204. Springer Berlin Heidelberg (2006)
Mordukhovich, B.S.: Variational analysis and generalized differentiation I, Basis theory. Springer (2006)
Mordukhovich, B.S.: Variational analysis and generalized differentiation II, Applications. Springer (2006)
Penot, J.-P.: Calculus without derivatives. Springer (2013)
Rösch, A., Tröltzsch, F.: On regularity of solutions and Lagrange multipliers of optimal control problems for semilinear equations with mixed pointwise control-state constraints. SIAM J. Control Optim. 46, 1098–1115 (2007)
Rockafellar, R.T., Wets, R.J.-B.: Variational analysis. Springer (1997)
Rockafellar, R.T.: Conjugate duality and optimization, regional conference series in applied mathematics. SIAM, Philadelphia, PA (1974)
Robinson, S.M.: Stability theory for systems of inequalities, part II: Differentiable nonlinear systems. SIAM J. Numer. Anal. 12, 497–513 (1976)
Zowe, J., Kurcyusz, S.: Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5, 49–62 (1979)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kien, B.T., Nhu, V.H. & Son, N.H. Second-Order Optimality Conditions for a Semilinear Elliptic Optimal Control Problem with Mixed Pointwise Constraints. Set-Valued Var. Anal 25, 177–210 (2017). https://doi.org/10.1007/s11228-016-0373-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11228-016-0373-8
Keywords
- Second-order necessary optimality condition
- Second-order sufficient optimality condition
- Optimal control
- Semilinear elliptic equation
- Mixed pointwise constraint
- Strongly extended polyhedricity condition