Legendre Transform and Applications to Finite and Infinite Optimization


We investigate convex constrained nonlinear optimization problems and optimal control with convex state constraints in the light of the so-called Legendre transform. We use this change of coordinate to propose a gradient-like algorithm for mathematical programs, which can be seen as a search method along geodesics. We also use the Legendre transform to study the value function of a state constrained Mayer problem and we show that it can be characterized as the unique viscosity solution of the Hamilton-Jacobi-Bellman equation.

This is a preview of subscription content, access via your institution.


  1. 1.

    Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  2. 2.

    Álvarez, F., Bolte, J., Brahic, O.: Hessian Riemannian gradient flows in convex programming. SIAM J. Control Optim. 43(2), 477–501 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Attouch, H., Bolte, J., Redont, P., Teboulle, M.: Singular Riemannian barrier methods and gradient-projection dynamical systems for constrained optimization. Optimization 53(5–6), 435–454 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Auslender, A., Teboulle, M.: Interior gradient and proximal methods for convex and conic optimization. SIAM J. Optim. 16(3), 697–725 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Bardi, M., Capuzzo-Dolcetta, I.: Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. In: Systems & Control: Foundations & Applications. Birkhäuser Boston Inc., Boston. With appendices by Maurizio Falcone and Pierpaolo Soravia (1997)

  6. 6.

    Bayer, D.A., Lagarias, J.C.: The nonlinear geometry of linear programming. I. Affine and projective scaling trajectories. Trans. Am. Math. Soc. 314(2), 499–526 (1989)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Bokanowski, O., Forcadel, N., Zidani, H.: Deterministic state-constrained optimal control problems without controllability assumptions. ESAIM: Control Optim. Calc. Var. 17(04), 995–1015 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Bolte, J., Teboulle, M.: Barrier operators and associated gradient-like dynamical systems for constrained minimization problems. SIAM J. Control Optim. 42(4), 1266–1292 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Borwein, J.M., Vanderwerff, J.: Convex functions of Legendre type in general Banach spaces. J. Convex Anal. 8(2), 569–582 (2001)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Borwein, J.M., Vanderwerff, J.D.: Convex Functions: Constructions, Characterizations and Counterexamples. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  11. 11.

    Boscain, U., Piccoli, B.: Optimal Syntheses for Control Systems on 2-D Manifolds. Springer, Berlin (2004)

    MATH  Google Scholar 

  12. 12.

    Burachik, R., Drummond, L.M.G., Iusem, A.N., Svaiter, B.F.: Full convergence of the steepest descent method with inexact line searches. Optimization 32(2), 137–146 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Chryssochoos, I., Vinter, R.: Optimal control problems on manifolds: a dynamic programming approach. J. Math. Anal. Appl. 287(1), 118–140 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Clarke, F., Ledyaev, Y., Stern, R., Wolenski, P.: Nonsmooth Analysis and Control Theory, 1 edn. Springer-Verlag, New York (1998)

  15. 15.

    Clarke, F., Stern, R.: Hamilton-Jacobi characterization of the state constrained value. Nonlinear Anal. Theory Methods Appl. 61(5), 725–734 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Crouzeix, J.: A relationship between the second derivatives of a convex function and of its conjugate. Math. Program. 13(1), 364–365 (1977)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Boston (1992)

    Book  MATH  Google Scholar 

  18. 18.

    Fiacco, A.V.: Perturbed variations of penalty function methods. Example: projective SUMT. Ann. Oper. Res. 27(1–4), 371–380 (1990)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Frankowska, H., Mazzola, M.: Discontinuous solutions of Hamilton–Jacobi–Bellman equation under state constraints. Calc. Var. Partial Differ. Equ. 46(3-4), 725–747 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Frankowska, H., Vinter, R.B.: Existence of neighboring feasible trajectories: applications to dynamic programming for state-constrained optimal control problems. J. Optim. Theory Appl. 104(1), 20–40 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Hermosilla, C., Zidani, H.: Infinite horizon problems on stratifiable state-constraints sets. J. Differ. Equ. 258(4), 1430–1460 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Iusem, A.N., Svaiter, B.F., Da Cruz Neto, J.X.: Central paths, generalized proximal point methods, and Cauchy trajectories in Riemannian manifolds. SIAM J. Control Optim. 37(2), 566–588 (electronic) (1999)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Klötzler, R.: On a general conception of duality in optimal control. In: Equadiff IV, pp 189–196. Springer, Berlin (1979)

  24. 24.

    Lee, J.M.: Riemannian Manifolds: An Introduction to Curvature. Springer-Verlag, New York (1997)

    Book  MATH  Google Scholar 

  25. 25.

    Lee, J.M.: Introduction to Smooth Manifolds. Springer-Verlag, New York (2012)

  26. 26.

    McCormick, G.P.: The projective SUMT method for convex programming. Math. Oper. Res. 14(2), 203–223 (1989)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Nesterov, Y., Todd, M.: On the Riemannian geometry defined by self-concordant barriers and interior-point methods. Found. Comput. Math. 2(4), 333–361 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Nocedal, J., Wright, S.: Numerical Optimization. Springer-Verlag, New York (2006)

  29. 29.

    Quiroz, E.P., Oliveira, P.R.: Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds. J. Convex Anal. 16(1), 49–69 (2009)

    MathSciNet  MATH  Google Scholar 

  30. 30.

    Renegar, J.: A Mathematical View of Interior-Point Methods in Convex Optimization. Society for Industrial and Applied Mathematics (2001)

  31. 31.

    Rockafellar, R.T.: Convex Analysis. Princeton University Press (1970)

  32. 32.

    Rockafellar, R.T.: Conjugate duality and optimization. Society for Industrial and Applied Mathematics (1974)

  33. 33.

    Smith, S.T.: Optimization techniques on Riemannian manifolds. Fields Inst. Commun. 3(3), 113–135 (1994)

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    Soner, H.: Optimal control with state-space constraint I. SIAM J. Control Optim. 24(3), 552–561 (1986)

    MathSciNet  Article  MATH  Google Scholar 

  35. 35.

    Udriste, C.: Convex Function and Optimization Methods on Riemannian Manifolds. Springer, Netherlands (1994)

  36. 36.

    Vanderbei, R.J.: Linear programming. In: Foundations and extensions, International Series in Operations Research & Management Science, vol 37 (2001)

  37. 37.

    Vinter, R.: Optimal Control. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  38. 38.

    Vinter, R.: Convex duality and nonlinear optimal control. SIAM J. Control Optim. 31(2), 518–538 (1993)

    MathSciNet  Article  MATH  Google Scholar 

  39. 39.

    Yang, Y.: Globally convergent optimization algorithms on Riemannian manifolds: uniform framework for unconstrained and constrained optimization. J. Optim. Theory Appl. 132(2), 245–265 (2007)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Cristopher Hermosilla.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hermosilla, C. Legendre Transform and Applications to Finite and Infinite Optimization. Set-Valued Var. Anal 24, 685–705 (2016). https://doi.org/10.1007/s11228-016-0368-5

Download citation


  • Convex functions of Legendre type
  • Legendre transform
  • Geodesic search methods
  • Optimal control
  • Convex state constraints
  • Riemannian metrics

Mathematics Subject Classification (2010)

  • MSC 65K05
  • MSC 90C51
  • MSC 93C15
  • MSC 49L25