Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss–Seidel methods. Math. Program. 137(1–2), 91–129 (2013). doi:10.1007/s10107-011-0484-9
MathSciNet
Article
MATH
Google Scholar
Aubin, J., Frankowska, H.: Set-Valued Analysis. Modern Birkhäuser Classics. Birkhäuser, Boston (2009). doi:10.1007/978-0-8176-4848-0. Reprint of the 1990 edition
Book
Google Scholar
Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York (2011). doi:10.1007/978-1-4419-9467-7
Google Scholar
Bolte, J., Daniilidis, A., Ley, O., Mazet, L.: Characterizations of Lojasiewicz inequalities: subgradient flows, talweg, convexity. Trans. Am. Math. Soc. 362(6), 3319–3363 (2010). doi:10.1090/S0002-9947-09-05048-X
Article
MATH
Google Scholar
Bonnans, J.F., Shapiro, A.: Perturbation analysis of optimization problems. Springer series in operations research. Springer, New York. doi:10.1007/978-1-4612-1394-9 (2000)
Casas, E., Tröltzsch, F.: Second order optimality conditions and their role in PDE control. Jahresbericht der Deutschen Mathematiker-Vereinigung 117(1), 3–44 (2015). doi:10.1365/s13291-014-0109-3
MathSciNet
Article
MATH
Google Scholar
Clarke, F.H.: Optimization and Nonsmooth Analysis, 2 edn. Classics Appl. Math, vol. 5. SIAM, Philadelphia (1990). doi:10.1137/1.9781611971309
Clason, C.: L∞ fitting for inverse problems with uniform noise. Inverse Prob. 28(104), 007 (2012). doi:10.1088/0266-5611/28/10/104007
Clason, C., Jin, B.: A semismooth Newton method for nonlinear parameter identification problems with impulsive noise. SIAM J. Imag. Sci. 5, 505–536 (2012). doi:10.1137/110826187
MathSciNet
Article
MATH
Google Scholar
Clason, C., Kunisch, K.: Multi-bang control of elliptic systems. Annales de l’Institut Henri Poincaré (C) Analyse Non Linéaire. doi:10.1016/j.anihpc.2013.08.005. Article in press (2013)
Clason, C., Rund, A., Kunisch, K., Barnard, R.C.: A convex penalty for switching control of partial differential equations. Syst. Control Lett. 89, 66–73 (2016). doi:10.1016/j.sysconle.2015.12.013
MathSciNet
Article
MATH
Google Scholar
Dong, Y., Hintermüller, M., Rincon-Camacho, M.: Automated regularization parameter selection in multi-scale total variation models for image restoration. J. Math. Imaging Vision 40(1), 82–104 (2011). doi:10.1007/s10851-010-0248-9
MathSciNet
Article
MATH
Google Scholar
Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings, 2nd edn. Springer, New York. doi:10.1007/978-1-4939-1037-3 (2014)
MATH
Google Scholar
Drusvyatskiy, D., Lewis, A.S.: Tilt stability, uniform quadratic growth, and strong metric regularity of the subdifferential. SIAM J. Optim. 23(1), 256–267 (2013). doi:10.1137/120876551
MathSciNet
Article
MATH
Google Scholar
Eberhard, A., Wenczel, R.: A study of tilt-stable optimality and sufficient conditions. Nonlinear Anal. Theory Methods Appl. 75(3), 1260–1281 (2012). doi:10.1016/j.na.2011.08.014. Variational Analysis and Its Applications
MathSciNet
Article
MATH
Google Scholar
Ekeland, I., Temam, R.: Convex analysis and variational problems. SIAM. doi:10.1137/1.9781611971088 (1999)
Emich, K., Henrion, R.: A simple formula for the second-order subdifferential of maximum functions. Vietnam J. Math. 42(4), 467–478 (2014). doi:10.1007/s10013-013-0052-0
MathSciNet
Article
MATH
Google Scholar
Griepentrog, J.A., Recke, L.: Linear elliptic boundary value problems with non-smooth data: normal solvability on Sobolev-Campanato spaces. Math. Nachr. 225, 39–74 (2001). doi:10.1002/1522-2616(200105)225:1<39::AID-MANA39>3.3.CO;2-X
Henrion, R., Jourani, A., Outrata, J.: On the calmness of a class of multifunctions. SIAM J. Optim. 13(2), 603–618 (2002). doi:10.1137/S1052623401395553
MathSciNet
Article
MATH
Google Scholar
Henrion, R., Kruger, A.Y., Outrata, J.V.: Some remarks on stability of generalized equations. J. Optim. Theory Appl. 159(3), 681–697 (2013). doi:10.1007/s10957-012-0147-x
MathSciNet
Article
MATH
Google Scholar
Henrion, R., Mordukhovich, B.S., Nam, N.M.: Second-order analysis of polyhedral systems in finite and infinite dimensions with applications to robust stability of variational inequalities. SIAM J. Optim. 20(5), 2199–2227 (2010). doi:10.1137/090766413
MathSciNet
Article
MATH
Google Scholar
Hiriart-Urruty, J.B., Lemaréchal, C.: Fundamentals of convex analysis springer. doi:10.1007/978-3-642-56468-0 (2001)
Ioffe, A.D.: Metric regularity. Theory and applications – a survey. arXiv:1505.07920 (2015)
Kaltenbacher, B., Kirchner, A., Vexler, B.: Adaptive discretizations for the choice of a Tikhonov regularization parameter in nonlinear inverse problems. Inverse Prob. 27(125), 008 (2011). doi:10.1088/0266-5611/27/12/125008
MathSciNet
MATH
Google Scholar
Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization: regularity, Calculus, Methods and Applications, Nonconvex Optimization and Its Applications, vol. 60. Springer US. doi:10.1007/b130810 (2002)
Klatte, D., Kummer, B.: Optimization methods and stability of inclusions in Banach spaces. Math. Program. 117(1-2), 305–330 (2009). doi:10.1007/s10107-007-0174-9
MathSciNet
Article
MATH
Google Scholar
Kröner, A., Vexler, B.: A priori error estimates for elliptic optimal control problems with a bilinear state equation. J. Comput. Appl. Math 230(2), 781–802 (2009). doi:10.1016/j.cam.2009.01.023
MathSciNet
Article
MATH
Google Scholar
Kunze, M., Monteiro Marques, M.D.P.: An introduction to Moreau’s sweeping process. In: Brogliato, B. (ed.) Impacts in Mechanical Systems, Lecture Notes in Physics, vol. 551, pp. 1–60. Springer, Berlin (2000). doi:10.1007/3-540-45501-9_1
Kurdyka, K.: On gradients of functions definable in o-minimal structures. Annales de l’Institut Fourier 48(3), 769–783 (1998). http://eudml.org/doc/75302
Levy, A.B., Poliquin, R.A., Rockafellar, R.T.: Stability of locally optimal solutions. SIAM J. Optim. 10(2), 580–604 (2000). doi:10.1137/S1052623498348274
MathSciNet
Article
MATH
Google Scholar
Lewis, A.S., Zhang, S.: Partial smoothness, tilt stability, and generalized hessians. SIAM J. Optim. 23(1), 74–94 (2013). doi:10.1137/110852103
de Los Reyes, J.C., Schönlieb, C.B., Valkonen, T.: The structure of optimal parameters for image restoration problems. J. Math. Anal. Appl. 434(1), 464–500 (2016). doi:10.1016/j.jmaa.2015.09.023. Accepted
Mordukhovich, B.S.: Sensitivity analysis in nonsmooth optimization. In: Field, D. A., Komkov, V. (eds.) Proceedings of the SIAM Regional Conference on Industrial Design Theory, Ohio, April 25–26, 1990, pp 32–46. SIAM, Philadelphia (1992)
Mordukhovich, B.S.: Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions. Trans. Am. Math. Soc. 340(1), 1–35 (1993). doi:10.1090/S0002-9947-1993-1156300-4
MathSciNet
Article
MATH
Google Scholar
Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory, Grundlehren der mathematischen Wissenschaften, vol. 330 Springer-Verlag. doi:10.1007/3-540-31247-1 (2006)
Mordukhovich, B.S., Nghia, T.T.A.: Second-order variational analysis and characterizations of tilt-stable optimal solutions in infinite-dimensional spaces. Nonlinear Anal. Theory Methods Appl. 86, 159–180 (2013). doi:10.1016/j.na.2013.03.014
MathSciNet
Article
MATH
Google Scholar
Mordukhovich, B.S., Nghia, T.T.A.: Full Lipschitzian and Hölderian stability in optimization with applications to mathematical programming and optimal control. SIAM J. Optim. 24(3), 1344–1381 (2014). doi:10.1137/130906878
MathSciNet
Article
MATH
Google Scholar
Mordukhovich, B.S., Outrata, J.V.: On second-order subdifferentials and their applications. SIAM J. Optim. 12(1), 139–169 (2001). doi:10.1137/S1052623400377153
Mordukhovich, B.S., Outrata, J.V., Ramírez Cabrera, H.: Graphical derivatives and stability analysis for parameterized equilibria with conic constraints. Set-Valued and Variational Analysis, 1–18 (2015). doi:10.1007/s11228-015-0328-5
Mordukhovich, B.S., Rockafellar, R.T.: Second-order subdifferential calculus with applications to tilt stability in optimization. SIAM J. Optim. 22(3), 953–986 (2012). doi:10.1137/110852528
MathSciNet
Article
MATH
Google Scholar
Lojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels. In: Les équations aux dérivées partielles (paris, 1962), pp. 87–89. éditions du centre national de la recherche scientifique, paris (1963)
Lojasiewicz, S.: Sur les ensembles semi-analytiques. Actes Congrés Intern Math. 2, 237–241 (1970). http://www.mathunion.org/ICM/ICM1970.2/Main/icm1970.2.0237.0242.ocr.pdf
MATH
Google Scholar
Poliquin, R.A., Rockafellar, R.T.: Tilt stability of a local minimum. SIAM J. Optim. 8(2), 287–299 (1998). doi:10.1137/S1052623496309296
MathSciNet
Article
MATH
Google Scholar
Rockafellar, R.T.: Integral Functionals, Normal Integrands and Measurable Selections. In: Nonlinear Operators and the Calculus of Variations (Summer School, Univ. Libre Bruxelles, Brussels, 1975), Lecture Notes in Math., vol. 543, pp. 157–207. Springer, Berlin (1976). doi:10.1007/BFb0079944
Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, Grundlehren der mathematischen Wissenschaften, vol. 317 Springer-Verlag. doi:10.1007/978-3-642-02431-3 (1998)
Tuy, H.: D.C. Optimization: Theory, Methods and Algorithms. In: Horst, R., Pardolos, P.M. (eds.) Handbook of Global Optimization, pp. 149–216. Kluwer Academic Publishers (1995). doi:10.1007/978-1-4615-2025-2_4
Valkonen, T.: Diff-convex combinations of Euclidean distances: a search for optima. No. 99 in Jyväskylä Studies in Computing. University of Jyväskylä. http://tuomov.iki.fi/mathematics/thesis.pdf. Ph. D. Thesis (2008)
Valkonen, T.: Refined optimality conditions for differences of convex functions. J. Glob. Optim. 48(2), 311–321 (2010). doi:10.1007/s10898-009-9495-y
MathSciNet
Article
MATH
Google Scholar
Valkonen, T.: Extension of primal-dual interior point methods to diff-convex problems on symmetric cones. Optimization, 62(3), 345–377 (2013). doi:10.1080/02331934.2011.585465
Valkonen, T.: A primal-dual hybrid gradient method for nonlinear operators with applications to MRI. Inverse Prob. 30(5), 055012 (2014). doi:10.1088/0266-5611/30/5/055012
MathSciNet
Article
MATH
Google Scholar