Advertisement

Set-Valued and Variational Analysis

, Volume 24, Issue 4, pp 637–658 | Cite as

Multidimensional and Multivalued Ergodic Theorems for Measure-Preserving Transformations

  • Duong Xuan Giap
  • Nguyen Van Quang
Article

Abstract

The aim of this paper is to establish some multidimensional and multivalued Birkhoff’s ergodic theorems for measure preserving transformations. Two types of convergence will be considered: Mosco convergence and convergence in the gap topology. Some illustrative examples are provided.

Keywords

Separable Banach space Random set Measure-preserving transformation Birkhoff’s ergodic theorem Mosco convergence Gap topology 

Mathematics Subject Classifications (2010)

26E25 28B20 28D05 37A05 37A30 47A35 47H04 49J53 52A22 54C60 58C06 60G10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bán, J.: Ergodic theorems for random compact sets and fuzzy variables in Banach spaces. Fuzzy Sets Syst 44, 71–82 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Beer, G.: Topologies on closed and closed convex sets and the Effros measurability of set valued functions. In: Séminaire d’Analyse Convexe de l’Université de Montpellier 21,Exposé, p 2 (1991)Google Scholar
  3. 3.
    Beer, G.: Wijsman convergence of convex sets under renorming. Nonlinear Anal 22, 207–216 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Beer, G., Borwein, J.M.: Mosco Convergence and Reflexivity. Proc. Am. Math. Soc. 109(2), 427–436 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Castaing, C., Quang, N.V., Giap, D.X.: Mosco convergence of strong law of large numbers for double array of closed valued random variables in Banach space. Journal of Nonlinear and Convex Analysis 13(4), 615–636 (2012)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Castaing, C., Quang, N.V., Giap, D.X.: Various convergence results in strong law of large numbers for double array of random sets in Banach spaces. Journal of Nonlinear and Convex Analysis 13(1), 1–30 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Choirat, C., Hess, C., Seri, R. A.: A functional version of the Birkhoff ergodic theorem for a normal integrand: A variational approach. Ann. Probab. 31(1), 63–92 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dunford, N.: An individual ergodic theorem for non-commutative transformations. Acta Scientiarum Mathematicarum (Szeged) 14, 1–4 (1951)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Dunford, N., Schwartz, J.T.: Convergence almost everywhere of operator averages. J. Rational Mech. Anal 5, 129–178 (1956)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Fava, N.A.: Weak type inequalities for product operators. Stud. Math 42, 271–288 (1972)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Hess, C.: Multivalued Strong Laws of Large Numbers in the Slice Topology. Application to Integrands. Set-Valued Analysis 2, 183–205 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hess, C.: The distribution of unbounded random sets and the multivalued strong law of large numbers in nonreflexive Banach spaces. Journal of Convex Analysis 6(1), 163–182 (1999)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Hess, C., Seri, R., Choirat, C.: Ergodic theorems for extended real-valued random variables. Stochastic Processes and their Applications 120, 1908–1919 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hiai, F., Umegaki, H.: Integrals, conditional expectations and martingales of multivalued functions. J. Multivar. Anal. 7, 149–182 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Jones, R.L., Olsen, J.: Multiparameter weighted ergodic theorems. Can. J. Math. 46(2), 343–356 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Krengel, U.: Ergodic theorems. Walter de Gruyter Studies in Mathematics 6, Berlin-New York (1985)Google Scholar
  17. 17.
    Lin, M., Weber, M.: Weighted ergodic theorems and strong laws of large numbers. Ergodic Theory and Dynamical Systems 27, 511–543 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Mukhamedov, F., Mukhamedov, M., Temir, S.: On multiparameter weighted ergodic theorem for noncommutative L p-spaces. J. Math. Anal. Appl 343, 226–232 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Puri, M.L., Ralescu, D.A.: Fuzzy random variables. J. Math. Anal. Appl 114 (2), 409–422 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Terán, P.: A multivalued strong law of large numbers. J. Theor. Probab (2015). doi: 10.1007/s10959-014-0572-x
  21. 21.
    Yoshimoto, T.: An ergodic theorem for noncommutative operators. Proc. Am. Math. Soc 54, 125–129 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ziat, H.: Ergodic theorem and strong law of large numbers for unbounded and nonconvex random sets. International Journal of Mathematical Analysis 5(48), 2375–2393 (2011)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Zygmund, A.: An individual ergodic theorem for non-commutative transformations. Acta Scientiarum Mathematicarum (Szeged) 14, 103–110 (1951)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of MathematicsVinh UniversityNghe An ProvinceVietnam

Personalised recommendations