Skip to main content
Log in

Critical Objective Size and Calmness Modulus in Linear Programming

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

This paper introduces the concept of critical objective size associated with a linear program in order to provide operative point-based formulas (only involving the nominal data, and not data in a neighborhood) for computing or estimating the calmness modulus of the optimal set (argmin) mapping under uniqueness of nominal optimal solution and perturbations of all coefficients. Our starting point is an upper bound on this modulus given in Cánovas et al. (4). In this paper we prove that this upper bound is attained if and only if the norm of the objective function coefficient vector is less than or equal to the critical objective size. This concept also allows us to obtain operative lower bounds on the calmness modulus. We analyze in detail an illustrative example in order to explore some strategies that can improve the referred upper and lower bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azé, D., Corvellec, J.-N.: Characterizations of error bounds for lower semicontinuous functions on metric spaces. ESAIM Control Optim. Calc. Var. 10, 409–425 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cánovas, M.J., López, M.A., Parra, J., Toledo, F.J.: Distance to ill-posedness and the consistency value of linear semi-infinite inequality systems. Math. Program. Ser. A 103, 95–126 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cánovas, M.J., Hantoute, A., Parra, J., Toledo, F.J.: Boundary of subdifferentials and calmness moduli in linear semi-infinite optimization. Optim. Lett. 9, 513–521 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cánovas, M.J., Hantoute, A., Parra, J., Toledo, F.J.: Calmness modulus of fully perturbed linear programs. Math. Program. Ser. A, published online 26 June 2015, doi:10.1007/s10107-015-0926-x (2015)

  5. Cánovas, M.J., Henrion, R., López, M.A., Parra, J.: Outer limits of subdifferentials and calmness moduli in linear and nonlinear programming. J. Optim. Theory Appl., published online 05 August 2015, doi:10.1007/s10957-015-0793-x

  6. Cánovas, M.J., Kruger, A.Y., López, M.A., Parra, J., Thera, M.A.: Calmness modulus of linear semi-infinite programs. SIAM J. Optim. 24, 29–48 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cánovas, M.J., López, M.A., Parra, J., Toledo, F.J.: Calmness of the feasible set mapping for linear inequality systems. Set-Valued Var. Anal. 22, 375–389 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dontchev, A.L., Rockafellar, R.T.: Implicit functions and solution mappings: a view from variational analysis. Springer, New York (2009)

    Book  MATH  Google Scholar 

  9. Gfrerer, H.: First order and second order characterizations of metric subregularity and calmness of constraint set mappings. SIAM J. Optim. 21, 1439–1474 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goberna, M.A., López, M.A.: Linear Semi-infinite Optimization. Wiley, Chichester (1998)

    MATH  Google Scholar 

  11. Henrion, R., Jourani, A., Outrata, J.: On the calmness of a class of multifunctions. SIAM J. Optim. 13, 603–618 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Henrion, R., Outrata, J.: Calmness of constraint systems with applications. Math. Program. B 104, 437–464 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jourani, A.: Hoffman’s error bound, local controllability, and sensitivity analysis. SIAM J. Control Optim. 38, 947–970 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization: Regularity, Calculus, Methods and Applications. Nonconvex Optim. Appl., vol. 60. Kluwer Academic, Dordrecht (2002)

    MATH  Google Scholar 

  15. Klatte, D., Kummer, B.: Optimization methods and stability of inclusions in Banach spaces. Math. Program. B 117, 305–330 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Klatte, D., Thiere, G.: Error bounds for solutions of linear equations and inequalities. Math. Meth. Oper. Res. 41, 191–214 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kruger, A., Van Ngai, H., Théra, M.: Stability of error bounds for convex constraint systems in Banach spaces. SIAM J. Optim. 20, 3280–3296 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory. Springer, Berlin (2006)

    Google Scholar 

  19. Robinson, S.M.: A characterization of stability in linear programming. Oper. Res. 25, 435–447 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  20. Robinson, S.M.: Some continuity properties of polyhedral multifunctions. Mathematical programming at Oberwolfach (Proc. Conf., Math. Forschungsinstitut, Oberwolfach, 1979). Math. Programming Stud 14, 206–214 (1981)

    Article  Google Scholar 

  21. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Parra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cánovas, M.J., Henrion, R., Parra, J. et al. Critical Objective Size and Calmness Modulus in Linear Programming. Set-Valued Var. Anal 24, 565–579 (2016). https://doi.org/10.1007/s11228-015-0351-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-015-0351-6

Keywords

Mathematics Subject Classification (2010)

Navigation