Abstract
This paper introduces the concept of critical objective size associated with a linear program in order to provide operative point-based formulas (only involving the nominal data, and not data in a neighborhood) for computing or estimating the calmness modulus of the optimal set (argmin) mapping under uniqueness of nominal optimal solution and perturbations of all coefficients. Our starting point is an upper bound on this modulus given in Cánovas et al. (4). In this paper we prove that this upper bound is attained if and only if the norm of the objective function coefficient vector is less than or equal to the critical objective size. This concept also allows us to obtain operative lower bounds on the calmness modulus. We analyze in detail an illustrative example in order to explore some strategies that can improve the referred upper and lower bounds.
Similar content being viewed by others
References
Azé, D., Corvellec, J.-N.: Characterizations of error bounds for lower semicontinuous functions on metric spaces. ESAIM Control Optim. Calc. Var. 10, 409–425 (2004)
Cánovas, M.J., López, M.A., Parra, J., Toledo, F.J.: Distance to ill-posedness and the consistency value of linear semi-infinite inequality systems. Math. Program. Ser. A 103, 95–126 (2005)
Cánovas, M.J., Hantoute, A., Parra, J., Toledo, F.J.: Boundary of subdifferentials and calmness moduli in linear semi-infinite optimization. Optim. Lett. 9, 513–521 (2015)
Cánovas, M.J., Hantoute, A., Parra, J., Toledo, F.J.: Calmness modulus of fully perturbed linear programs. Math. Program. Ser. A, published online 26 June 2015, doi:10.1007/s10107-015-0926-x (2015)
Cánovas, M.J., Henrion, R., López, M.A., Parra, J.: Outer limits of subdifferentials and calmness moduli in linear and nonlinear programming. J. Optim. Theory Appl., published online 05 August 2015, doi:10.1007/s10957-015-0793-x
Cánovas, M.J., Kruger, A.Y., López, M.A., Parra, J., Thera, M.A.: Calmness modulus of linear semi-infinite programs. SIAM J. Optim. 24, 29–48 (2014)
Cánovas, M.J., López, M.A., Parra, J., Toledo, F.J.: Calmness of the feasible set mapping for linear inequality systems. Set-Valued Var. Anal. 22, 375–389 (2014)
Dontchev, A.L., Rockafellar, R.T.: Implicit functions and solution mappings: a view from variational analysis. Springer, New York (2009)
Gfrerer, H.: First order and second order characterizations of metric subregularity and calmness of constraint set mappings. SIAM J. Optim. 21, 1439–1474 (2011)
Goberna, M.A., López, M.A.: Linear Semi-infinite Optimization. Wiley, Chichester (1998)
Henrion, R., Jourani, A., Outrata, J.: On the calmness of a class of multifunctions. SIAM J. Optim. 13, 603–618 (2002)
Henrion, R., Outrata, J.: Calmness of constraint systems with applications. Math. Program. B 104, 437–464 (2005)
Jourani, A.: Hoffman’s error bound, local controllability, and sensitivity analysis. SIAM J. Control Optim. 38, 947–970 (2000)
Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization: Regularity, Calculus, Methods and Applications. Nonconvex Optim. Appl., vol. 60. Kluwer Academic, Dordrecht (2002)
Klatte, D., Kummer, B.: Optimization methods and stability of inclusions in Banach spaces. Math. Program. B 117, 305–330 (2009)
Klatte, D., Thiere, G.: Error bounds for solutions of linear equations and inequalities. Math. Meth. Oper. Res. 41, 191–214 (1995)
Kruger, A., Van Ngai, H., Théra, M.: Stability of error bounds for convex constraint systems in Banach spaces. SIAM J. Optim. 20, 3280–3296 (2010)
Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory. Springer, Berlin (2006)
Robinson, S.M.: A characterization of stability in linear programming. Oper. Res. 25, 435–447 (1977)
Robinson, S.M.: Some continuity properties of polyhedral multifunctions. Mathematical programming at Oberwolfach (Proc. Conf., Math. Forschungsinstitut, Oberwolfach, 1979). Math. Programming Stud 14, 206–214 (1981)
Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cánovas, M.J., Henrion, R., Parra, J. et al. Critical Objective Size and Calmness Modulus in Linear Programming. Set-Valued Var. Anal 24, 565–579 (2016). https://doi.org/10.1007/s11228-015-0351-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11228-015-0351-6