Skip to main content
Log in

Weak Differentiability with Applications to Variational Analysis

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

In this paper we first review the theory of weak differentiability with some improvements and unifications of existing results; then we introduce an extended variant of this notion and establish its basic properties; finally we use the weak differentiability and its variant to develop new calculus results in variational analysis for the theory of generalized differentiation and the sequential normal compactness. In this way we demonstrate that the weak differentiability and its variant, in contrast to the usual differentiability, are in fact more suitable for Fréchet and limiting/Mordukhovich constructions in variational analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borwein, J.M., Preiss, D.: A smooth variational principle with applications to subdifferentibility and to differentiability of convex functions. Trans. Amer. Math. Soc. 303(2), 517–527 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borwein, J.M., Strójwas, H.M.: Tangential approximations. Nonlinear Anal. 9, 1347–1366 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borwein, J.M., Vanderwerff, J.D.: Convex Functions, Constructions, Characterizations and Counterexamples. Cambridge University Press (2010)

  4. Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis. Springer (2005)

  5. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  6. Clarke, F.H., Ledyaev, Yu.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer, New York (1998)

    MATH  Google Scholar 

  7. Diestel, J.: Sequences and Series in Banach Spaces. Springer, New York (1984)

    Book  MATH  Google Scholar 

  8. Facchinei, F., Pang, J.-S.: Finite-dimensional Variational Inequalities and Complementary Problems, Vol. I and II. Springer, New York (2003)

    MATH  Google Scholar 

  9. Giles, J.R., Sciffer, S.: Continuity characterisations of differentiability of locally Lipschitz functions. Bull. Austral. Math. Soc. 41, 371–380 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lowen, P.D.: Limits of Fréchet normals in nonsmooth analysis. In: Ioffe, A.D., et al. (eds.) Optimization and Nonlinear Analysis, Pitman Res. Notes math. Ser., vol. 244, pp 178–188. Longman, Harlow (1992)

  11. Mordukhovich, B.S.: Metric approximations and necessary optimality conditions for general classes of extremal problems. Soviet Math. Dokl. 22, 526–530 (1980)

    MATH  Google Scholar 

  12. Mordukhovich, B.S.: Approximation method in problems of optimization and control. Nauka, Moscow (1988)

    MATH  Google Scholar 

  13. Mordukhovich, B.S.: Coderivatives of set-valued mappings: Calculus and applications. Nonlinear Anal 30, 3059–3070 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory. Springer, Berlin (2006)

    Google Scholar 

  15. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation II: Applications. Springer, Berlin (2006)

    Google Scholar 

  16. Mordukhovich, B.S., Shao, Y.: Nonsmooth sequential analysis in Asplund spaces. Trans. Amer. Math. Soc. 348, 1235–1280 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mordukhovich, B.S., Shao, Y.: Nonconvex coderivative calculus for infinite-dimensional multifunctions. Set-Valued Anal 4, 205–236 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mordukhovich, B.S., Shao, Y.: Stability of set-valued mappings in infinite dimensions: Point criteria and applications. SIAM J. Control Optim. 35(1), 285–314 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mordukhovich, B.S., Wang, B.: Sequential normal compactness in variational analysis. Nonlinear Anal 47, 717–728 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mordukhovich, B.S., Wang, B.: Differentiability and regularity of Lipschitzian mappings. Proc. Amer. Math. Soc. 131(2), 389–399 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mordukhovich, B.S., Wang, B.: Extensions of generalized differential calculus in Asplund spaces. J. Math. Anal. Appl. 272, 164–186 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mordukhovich, B.S., Wang, B.: Normal compactness conditions in variational analysis. In: Proceedings of the 41st IEEE Conference on Decision and Control, pp 3539–3544 (2002)

  23. Modukhovich, B.S., Wang, B.: Calculus of sequential normal compactness in variational analysis. J. Math. Anal. Appl. 282, 63–84 (2003)

    Article  MathSciNet  Google Scholar 

  24. Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability, 2nd edn. Springer, Berlin (1993)

    MATH  Google Scholar 

  25. Rockafellar, R.T.: Convex Analysis. Princeton, New Jersey (1970)

    Book  MATH  Google Scholar 

  26. Rockafellar, R.T.: Directional Lipschitzian functions and subdifferential calculus. Proc. London Math. Soc. 39, 331–355 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  28. Rudin, W.: Functional Analysis, 2nd edn. McGraw-Hill (1991)

  29. Thibault, L.: Sous-différentiel de fonctions vectorielles compactement lipschitziennes. C. R. Acad. Sc. Paris 286, 995–998 (1978)

  30. Thibault, L.: On compactly Lipschitzian mappings, recent advances in optimization. In: Gritzmann, P., et al. (eds.) Lecture Notes in Econ. Math. Syst., Ser., vol. 456, pp 356–364. Springer, Berlin (1997)

  31. Wang, B.: Beginning Variational Analysis (lecture notes). Bohai University, Jinzhou (2010)

  32. Wang, B., Zhu, M., Zhao, Y.: Generalized sequential normal compactness in Banach spaces. Nonlinear Anal 79, 221–232 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, B., Wang, D.: Generalized sequential normal compactness in Asplund spaces. Applicable Anal (2014). doi:10.1080/00036811.2013.879384

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingwu Wang.

Additional information

The work of the second author was partially supported by the National Science Foundation of China (Grant No. 11431004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Yang, X. Weak Differentiability with Applications to Variational Analysis. Set-Valued Var. Anal 24, 299–321 (2016). https://doi.org/10.1007/s11228-015-0341-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-015-0341-8

Keywords

Mathematics Subject Classification (2010)

Navigation