Set-Valued and Variational Analysis

, Volume 24, Issue 2, pp 231–251 | Cite as

Metric Subregularity of Composition Set-Valued Mappings with Applications to Fixed Point Theory

Article

Abstract

In this paper we underline the importance of the parametric subregularity property of set-valued mappings, defined with respect to fixed sets. We show that this property appears naturally for some very simple mappings which play an important role in the theory of metric regularity. We prove a result concerning the preservation of metric subregularity at generalized compositions. Then we obtain, in purely metric setting, several fixed point assertions for set-valued mappings in local and global frameworks.

Keywords

Global regularity and subregularity Set-valued compositions Fixed point assertions 

Mathematics Subject Classification (2010)

90C30 49J52 49J53 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adly, S., Dontchev, A.L., Théra, M.: On one-sided Lipschitz stability of set-valued contractions. Numer. Funct. Anal. Optim. 35, 837–850 (2014)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Apetrii, M., Durea, M., Strugariu, R.: On subregularity properties of set-valued mappings. Applications to solid vector optimization. Set-Valued and Variational Analysis 21, 93–126 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Arutyunov, A.V.: Covering mapping in metric spaces, and fixed points. Dokl. Math. 76, 665–668 (2007)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Arutyunov, A.V: Stability of coincidence points and properties of covering mappings. Mathematical Notes 86, 153–158 (2009)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Arutyunov, A., Avakov, E., Gel’man, B., Dmitruk, A., Obukhovskii, V.: Locally covering maps in metric spaces and coincidence points. J. fixed point theory appl. 5, 105–127 (2009)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Arutyunov, A.V., Avakov, E.R., Izmailov, A.F.: Directional regularity and metric regularity. SIAM J. Optim. 18, 810–833 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Arutyunov, A.V., Avakov, E.R., Zhukovskiy, S.E.: Stability theorems for estimating the distance to a set of coincidence points, SIAM Journal on Optimization, to appearGoogle Scholar
  8. 8.
    Arutyunov, A.V., Zhukovskiy, S.E.: Perturbation of solutions of the coincidence point problem for two mappings. Dokl. Math. 89, 346–348 (2014)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Dmitruk, A.V.: On a nonlocal metric regularity of nonlinear operators. Control. Cybern. 34, 723–746 (2005)MathSciNetMATHGoogle Scholar
  10. 10.
    Dmitruk, A.V., Kruger, A.Y.: Metric regularity and systems of generalized equations. Aust. J. Math. Anal. Appl. 342, 864–873 (2008)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Dmitruk, A.V., Kruger, A.Y.: Extensions of metric regularity. Optimization 58, 561–584 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Dmitruk, A.V., Milyutin, A.A., Osmolovskii, N.P.: Lyusternik’s theorem and the theory of extrema. Uspekhi Mat Nauk 35, 11–46 (1980)MathSciNetMATHGoogle Scholar
  13. 13.
    Dontchev, A.L.: The Graves theorem revisited. Journal of Convex Analysis 3, 45–53 (1996)MathSciNetMATHGoogle Scholar
  14. 14.
    Dontchev, A.L., Frankowska, H.: Lyusternik-Graves theorem and fixed points. Proc. Am. Math. Soc. 139, 521–534 (2011)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Dontchev, A.L., Frankowska, H.: Lyusternik-Graves theorem and fixed points II. Journal of Convex Analysis 19, 955–973 (2012)MathSciNetMATHGoogle Scholar
  16. 16.
    Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. Springer, Berlin (2009)CrossRefMATHGoogle Scholar
  17. 17.
    Durea, M., Strugariu, R.: Openness stability and implicit multifunction theorems: Applications to variational systems, Nonlinear Analysis, Theory. Math. Methods Appl. 75, 1246–1259 (2012)MathSciNetMATHGoogle Scholar
  18. 18.
    Durea, M., Strugariu, R.: Chain rules for linear openness in general Banach spaces. SIAM J. Optim. 22, 899–913 (2012)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Durea, M., Strugariu, R.: Chain rules for linear openness in metric spaces and applications, Mathematical Programming. Ser. A 143, 147–176 (2014)MathSciNetMATHGoogle Scholar
  20. 20.
    Gfrerer, H.: On directional metric regularity, subregularity and optimality conditions for nonsmooth mathematical programs. Set-Valued and Variational Analysis 21, 151–176 (2013)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Gfrerer, H.: On metric pseudo-(sub)regularity of multifunctions and optimality conditions for degenerated mathematical programs. Set-Valued and Variational Analysis 22, 79–115 (2014)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Ioffe, A.D: Metric regularity and subdifferential calculus. Uspekhi Mat. Nauk 55(3(333)),103–162 (2000); English translation in Mathematical Surveys, 55, 501–558 (2000)Google Scholar
  23. 23.
    Ioffe, A.D.: Towards variational analysis in metric spaces: metric regularity and fixed points, Mathematical Programming. Ser. B 123, 241–252 (2010)MathSciNetMATHGoogle Scholar
  24. 24.
    Ioffe, A.D: Regularity on a fixed set. SIAM J. Optim. 21, 1345–1370 (2011)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Kruger, A.Y.: Error bounds and metric subregularity. Optimization 64, 49–79 (2015)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Lim, T.-C.: On fixed-point stability for set-valued contractive mappings with applications to generalized differential equations. J. Math. Anal. Appl. 110, 436–441 (1985)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Ngai, H.V., Théra, M.: Error bounds in metric spaces and application to the perturbation stability of metric regularity. SIAM J. Optim. 19, 1–20 (2008)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Ngai, H.V., Théra, M.: Directional metric regularity of multifunctions. available at arXiv:1304.7748
  29. 29.
    Uderzo, A.: A metric version of Milyutin Theorem. Set-Valued and Variational Analysis 20, 279–306 (2012)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Ursescu, C.: Inherited openness. Revue Roumaine des Mathématiques Pures et Appliquées 41(5–6), 401–416 (1996)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Faculty of Mathematics“Alexandru Ioan Cuza” University of IaşiIaşiRomania
  2. 2.Department of Mathematics and Informatics“Gheorghe Asachi” Technical University of IaşiIaşiRomania

Personalised recommendations