Advertisement

Set-Valued and Variational Analysis

, Volume 23, Issue 3, pp 519–546 | Cite as

Convex SIP Problems with Finitely Representable Compact Index Sets: Immobile Indices and the Properties of the Auxiliary NLP Problem

  • O. I. Kostyukova
  • T. V. TchemisovaEmail author
Article

Abstract

In the paper, we consider a problem of convex Semi-Infinite Programming with a compact index set defined by a finite number of nonlinear inequalities. While studying this problem, we apply the approach developed in our previous works and based on the notions of immobile indices, the corresponding immobility orders and the properties of a specially constructed auxiliary nonlinear problem. The main results of the paper consist in the formulation of sufficient optimality conditions for a feasible solution of the original SIP problem in terms of the optimality conditions for this solution in a specially constructed auxiliary nonlinear programming problem and in study of certain useful properties of this finite problem.

Keywords

Semi-infinite programming (SIP) Constraint qualifications (CQ) Lower level problem (SIP) Immobile index Immobility order Optimality conditions Nonlinear programming (NLP) 

Mathematics Subject Classification (2010)

90C25 90C30 90C34 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New-York (2000)CrossRefzbMATHGoogle Scholar
  2. 2.
    Borwein, J.M.: Direct theorems in semi-infinite convex programming. Math. Program. 21, 301–318 (1981)CrossRefzbMATHGoogle Scholar
  3. 3.
    Cánovaz, M.J., López, M.A., Mordukhovich, B.S., Parra J.: Variational analysis in Semi-Infinite and Infinite Programming, II: necessary optimality conditions. SIAM I. Optim. 20(6), 2788–2806 (2010)CrossRefGoogle Scholar
  4. 4.
    Charnes, A., Cooper, W.W., Kortanek, K.O.: Duality, Haar programs and finite sequence spaces. Proc. Natl. Acad. Sci. 48, 783–786 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Charnes, A., Cooper, W.W., Kortanek, K.O.: On the theory of Semi-Infinite Programming and a generalization of the Kuhn-Tucker saddle point theorem for arbitrary convex functions. Nav. Res. Logist. Quarterly 16, 41–51 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chernikova, N.V.: Algorithm for discovering the set of all the solutions of a linear programming problem. U.S.S.R Comput. Math. Math. Phys. 8(6), 282–293 (1968)CrossRefGoogle Scholar
  7. 7.
    Fleger, M.L., Kanzow, C.: Abadie-type constraint qualifications for mathematical programs with equilibrium constraints. JOTA 124(3), 595–614 (2005)CrossRefGoogle Scholar
  8. 8.
    Goberna, M.A., López, M.A. (eds.): Semi-Infinite Programming: Recent Advances. Kluwer, Dordrecht (2001)Google Scholar
  9. 9.
    Gustafson, S.-A., Kortanek, K.O.: Numerical treatment of a class of semi-infinite programming problems. Nav. Res. Logist. Quarterly 20, 477–504 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hettich, R., Kortanek, K.O.: Semi-infinite programming: theory, methods and applications. SIAM Rev. 35, 380–429 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hettich, R., Still, G.: Second order optimality conditions for generalized semi-infinite programming problems. Optimization 34, 195–211 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Jongen, H.Th., Wetterling, W., Zwier, G.: On sufficient conditions for local optimality in semi-infinite programming. Optimization 18, 165–178 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kawasaki, H.: Second order necessary conditions of Kuhn-Tucker type under new constraint qualifications. JOTA 57, 253–264 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Klatte, D.: Stable local minimizers in semi-infinite optimization: regularity and second-order conditions. J. Comput. Appl. Math. 56(1–2), 137–157 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kostyukova, O.I., Tchemisova, T.V.: Implicit optimality criterion for convex SIP problem with box constrained index set. TOP 20(2), 475–502 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kostyukova, O.I., Tchemisova, T.V.: On a constructive approach to optimality conditions for convex SIP problems with polyhedral index sets. Optimization, Special Issue on recent advances in continuous optimizaton 63(1), 67–91 (2014)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Kostyukova, O.I., Tchemisova, T.V., Yermalinskaya, S.A.: Study of a special nonlinear problem arising in convex semi-infinite programming. J. Math. Sci. 161(6), 878–893 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kostyukova, O.I., Tchemisova, T.V.: A constructive algorithm for determination of immobile indices in convex SIP problems with polyhedral index sets, Working paper, University of Aveiro (2012). http://hdl.handle.net/10773/8888
  19. 19.
    López, M.A., Cánovas, M.J., Parra, J.: Stability of the feasible set for linear inequality systems: A carrier index set approach. Linear Algebra Appl. 357(1–3), 83–105 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    López, M.A., Still, G.: Semi-infinite programming. Eur. J. Oper. Res. 180, 491–518 (2007)CrossRefzbMATHGoogle Scholar
  21. 21.
    Mordukhovich, B., Nghia, T.T.A.: Constraint qualifications and optimality conditions for nonconvex semi-infinite and infinite programs. Math. Program. Ser. B 139(1–2), 271–300 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Rückmann, J.-J., Shapiro, A.: Second-Order Optimality Conditions in Generalized Semi-Infinite Programming. Set-Valued Analysis 9, 169–186 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Shapiro, A.: Semi-infinite programming: duality, discretization and optimality conditions. Invited rewiew. Optimization 58(2), 133–161 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Stein, O.: How to solve to solve a Semi-infinite optimization problem. EJOR 223(2), 312–320 (2012)CrossRefzbMATHGoogle Scholar
  25. 25.
    Stein, O., Still, G.: On optimality conditions for generalized Semi-Infinite Programming problems. J. Optim. Theory Appl. 104(2), 443–458 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Still, G: Generalized Semi-infinite programming: theory and methods. European Journal of Operational Research 119(2), 301–313 (1999)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Institute of MathematicsNational Academy of Sciences of BelarusMinskBelarus
  2. 2.CIDMA–Center for Research and Development in Mathematics and Applications, Department of MathematicsUniversity of Aveiro, Campus University SantiagoAveiroPortugal

Personalised recommendations