Abstract
After recalling the notion of \(\mathcal {L}^{1}\) limit solution for a dynamics which is affine in the (unbounded) derivative of the control, we focus on the possible occurrence of the Lavrentiev phenomenon for a related optimal control problem. By this we mean the possibility that the cost functional evaluated along \(\mathcal {L}^{1}\) inputs (and the corresponding limit solutions) assumes values strictly smaller than the infimum over AC inputs. In fact, it turns out that no Lavrentiev phenomenon may take place in the unconstrained case, while the presence of an end-point constraint may give rise to an actual gap. We prove that a suitable transversality condition, here called Quick 1-Controllability, is sufficient for this gap to be avoided. Meanwhile, we also investigate the issue of trajectories’ approximation through implementation of inputs with bounded variation.
This is a preview of subscription content, access via your institution.
References
Aronna, M., Rampazzo, F.: Necessary conditions involving Lie brackets for impulsive optimal control problems; the commutative case (2012). arXiv:1210.4532
Aronna, M., Rampazzo, F.: \(\mathcal {L}^{1}\) limit solutions for control systems. Submitted, arXiv:1401.0328(2013)
Aronna, M., Rampazzo, F.: A note on systems with ordinary and impulsive controls. IMA J. Math. Control Inf. (2014)
Arutyunov, A., Dykhta, V., Pereira, F.: Necessary conditions for impulsive nonlinear optimal control problems without a priori normality assumptions. J. Optim. Theory Appl. 124(1), 55–77 (2005)
Arutyunov, A., Karamzin, D., Pereira, F.: On a generalization of the impulsive control concept: controlling system jumps. Discrete Contin. Dyn. Syst. 29(2), 403–415 (2011)
Arutyunov, A., Karamzin, D., Pereira, F.: Pontryagin’s maximum principle for constrained impulsive control problems. Nonlinear Anal. 75(3), 1045–1057 (2012)
Aubin, J.P., Frankowska, H.: Set-valued Analysis. Modern Birkhäuser Classics. Birkhäuser Boston Inc., Boston (2009). Reprint of the 1990 edition [MR1048347]
Azimov, D.: Active sections of rocket trajectories. A survey of research. Avtom. Telemekh 11, 14–34 (2005)
Azimov, D., Bishop, R.: New trends in astrodynamics and applications: optimal trajectories for space guidance. Ann. New York Acad. Sci. 1065(1), 189–209 (2005). doi:10.1196/annals.1370.002
Bousquet, P., Mariconda, C., Treu, G.: On the Lavrentiev phenomenon for multiple integral scalar variational problems. J. Funct. Anal. 266(9), 5921–5954 (2014). doi:10.1016/j.jfa.2013.12.020
Bressan, A., Rampazzo, F.: On differential systems with vector-valued impulsive controls. Boll. Un. Mat. Ital. B (7) 2(3), 641–656 (1988)
Bressan, A., Rampazzo, F.: Impulsive control systems with commutative vector fields. J. Optim. Theory Appl. 71(1), 67–83 (1991)
Buttazzo, G., Belloni, M.: A survey on old and recent results about the gap phenomenon in the calculus of variations. In: Recent Developments in Well-Posed Variational Problems, Mathematics and Its Applications, vol. 331, pp. 1–27. Springer, Netherlands (1995)
Camilli, F., Falcone, M.: Approximation of control problems involving ordinary and impulsive controls. ESAIM Control Optim. Calc. Var. 4, 159–176 (electronic) (1999)
Cannarsa, P., Frankowska, H., Marchini, E.: Existence and Lipschitz regularity of solutions to Bolza problems in optimal control. Trans. Am. Math. Soc. 361(9), 4491–4517 (2009)
Cannarsa, P., Sinestrari, C.: Semiconcave functions, Hamilton-Jacobi equations, and optimal control. Progress in Nonlinear Differential Equations and their Applications, 58. Birkhäuser Boston Inc., Boston (2004)
Caponigro, M., Ghezzi, R., Piccoli, B., Trélat, E.: Regularization of chattering phenomena via bounded variation controls (2014). arXiv:1303.5796
Catllá, A., Schaeffer, D., Witelski, T., Monson, E., Lin, A.: On spiking models for synaptic activity and impulsive differential equations. SIAM Rev. 50(3), 553–569 (2008)
Cesari, L.: Optimization theory and applications. In: Applications of Mathematics (New York), vol. 17. Springer, New York. Problems with ordinary differential equations (1983)
Cheng, C.W., Mizel, V.: On the Lavrentiev phenomenon for optimal control problems with second-order dynamics. SIAM J. Control Optim. 34(6), 2172–2179 (1996)
Clarke, F., Vinter, R.: Regularity properties of solutions to the basic problem in the calculus of variations. Trans. Am. Math. Soc. 289(1), 73–98 (1985)
Clarke, F., Vinter, R.: Regularity properties of optimal controls. SIAM J. Control. Optim. 28(4), 980–997 (1990)
Dykhta, V.: The variational maximum principle and quadratic conditions for the optimality of impulse and singular processes. Sibirsk. Mat. Zh. 35(1), 70–82, ii (1994)
Gajardo, P., Ramirez, C.H., Rapaport, A.: Minimal time sequential batch reactors with bounded and impulse controls for one or more species. SIAM J. Control Optim. 47(6), 2827–2856 (2008)
Guerra, M., Sarychev, A.: Fréchet generalized trajectories and minimizers for variational problems of low coercivity. J. Dyn. Control. Syst. 1–27 (2014)
Lavrentiev, M.A.: Sur quelques problèmes du calcul des variations. Ann. Mat. Pura Appl. 4(2), 9–28 (1927)
Miller, B., Rubinovich, E.: Impulsive Control in Continuous and Discrete-Continuous Systems. Kluwer Academic/Plenum Publishers, New York (2003)
Motta, M., Rampazzo, F.: Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls. Differ. Integral Equ. 8(2), 269–288 (1995)
Motta, M., Rampazzo, F.: Dynamic programming for nonlinear systems driven by ordinary and impulsive controls. SIAM J. Control Optim. 34(1), 199–225 (1996)
Motta, M., Rampazzo, F.: Asymptotic controllability and optimal control. J. Differ. Equ. 254(7), 2744–2763 (2013). doi:10.1016/j.jde.2013.01.006
Motta, M., Sartori, C.: Uniqueness results for boundary value problems arising from finite fuel and other singular and unbounded stochastic control problems. Discrete Contin. Dyn. Syst. 21(2), 513–535 (2008)
Pereira, F., Silva, G.: Necessary conditions of optimality for vector-valued impulsive control problems. Syst. Control Lett. 40(3), 205–215 (2000)
Rishel, R.: An extended Pontryagin principle for control systems whose control laws contain measures. J. Soc. Ind. Appl. Math. Ser. A Control 3, 191–205 (1965)
Sarychev, A.: Nonlinear systems with impulsive and generalized function controls. In: Nonlinear Synthesis (Sopron, 1989), Progr. Systems Control Theory, vol. 9, pp. 244–257. Birkhäuser Boston, Boston (1991)
Sarychev, A., Torres, D.: Lipschitzian regularity of minimizers for optimal control problems with control-affine dynamics. Appl. Math. Optim. 41(2), 237–254 (2000)
Silva, G., Vinter, R.: Measure driven differential inclusions. J. Math. Anal. Appl. 202(3), 727–746 (1996)
Silva, G., Vinter, R.: Necessary conditions for optimal impulsive control problems. SIAM J. Control Optim. 35(6), 1829–1846 (1997)
Whitney, H.: Functions differentiable on the boundaries of regions. Ann. Math. 35(3), 482–485 (1934)
Wolenski, P., żabić, S.: A sampling method and approximation results for impulsive systems. SIAM J. Control Optim. 46(3), 983–998 (2007)
Zaslavski, A.: Nonoccurrence of the Lavrentiev phenomenon for many optimal control problems, vol. 45, pp 1116–1146 (electronic) (2006)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work is supported by the EU under the 7th Framework Programme FP7-PEOPLE-2010-ITN - Grant agreement number 264735-SADCO and by the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM), Italy.
Rights and permissions
About this article
Cite this article
Aronna, MS., Motta, M. & Rampazzo, F. Infimum Gaps for Limit Solutions. Set-Valued Var. Anal 23, 3–22 (2015). https://doi.org/10.1007/s11228-014-0296-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11228-014-0296-1
Keywords
- Optimal control
- Impulsive control
- Lavrentiev phenomenon
- Controllability
Mathematics Subject Classification (2010)
- 49N25
- 49N60