Set-Valued and Variational Analysis

, Volume 23, Issue 1, pp 3–22 | Cite as

Infimum Gaps for Limit Solutions

Article

Abstract

After recalling the notion of \(\mathcal {L}^{1}\)limit solution for a dynamics which is affine in the (unbounded) derivative of the control, we focus on the possible occurrence of the Lavrentiev phenomenon for a related optimal control problem. By this we mean the possibility that the cost functional evaluated along \(\mathcal {L}^{1}\) inputs (and the corresponding limit solutions) assumes values strictly smaller than the infimum over AC inputs. In fact, it turns out that no Lavrentiev phenomenon may take place in the unconstrained case, while the presence of an end-point constraint may give rise to an actual gap. We prove that a suitable transversality condition, here called Quick 1-Controllability, is sufficient for this gap to be avoided. Meanwhile, we also investigate the issue of trajectories’ approximation through implementation of inputs with bounded variation.

Keywords

Optimal control Impulsive control Lavrentiev phenomenon Controllability 

Mathematics Subject Classification (2010)

49N25 49N60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aronna, M., Rampazzo, F.: Necessary conditions involving Lie brackets for impulsive optimal control problems; the commutative case (2012). arXiv:1210.4532
  2. 2.
    Aronna, M., Rampazzo, F.: \(\mathcal {L}^{1}\) limit solutions for control systems. Submitted, arXiv:1401.0328(2013)
  3. 3.
    Aronna, M., Rampazzo, F.: A note on systems with ordinary and impulsive controls. IMA J. Math. Control Inf. (2014)Google Scholar
  4. 4.
    Arutyunov, A., Dykhta, V., Pereira, F.: Necessary conditions for impulsive nonlinear optimal control problems without a priori normality assumptions. J. Optim. Theory Appl. 124(1), 55–77 (2005)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Arutyunov, A., Karamzin, D., Pereira, F.: On a generalization of the impulsive control concept: controlling system jumps. Discrete Contin. Dyn. Syst. 29(2), 403–415 (2011)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Arutyunov, A., Karamzin, D., Pereira, F.: Pontryagin’s maximum principle for constrained impulsive control problems. Nonlinear Anal. 75(3), 1045–1057 (2012)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Aubin, J.P., Frankowska, H.: Set-valued Analysis. Modern Birkhäuser Classics. Birkhäuser Boston Inc., Boston (2009). Reprint of the 1990 edition [MR1048347]CrossRefGoogle Scholar
  8. 8.
    Azimov, D.: Active sections of rocket trajectories. A survey of research. Avtom. Telemekh 11, 14–34 (2005)MathSciNetGoogle Scholar
  9. 9.
    Azimov, D., Bishop, R.: New trends in astrodynamics and applications: optimal trajectories for space guidance. Ann. New York Acad. Sci. 1065(1), 189–209 (2005). doi:10.1196/annals.1370.002 CrossRefGoogle Scholar
  10. 10.
    Bousquet, P., Mariconda, C., Treu, G.: On the Lavrentiev phenomenon for multiple integral scalar variational problems. J. Funct. Anal. 266(9), 5921–5954 (2014). doi:10.1016/j.jfa.2013.12.020 CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Bressan, A., Rampazzo, F.: On differential systems with vector-valued impulsive controls. Boll. Un. Mat. Ital. B (7) 2(3), 641–656 (1988)MATHMathSciNetGoogle Scholar
  12. 12.
    Bressan, A., Rampazzo, F.: Impulsive control systems with commutative vector fields. J. Optim. Theory Appl. 71(1), 67–83 (1991)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Buttazzo, G., Belloni, M.: A survey on old and recent results about the gap phenomenon in the calculus of variations. In: Recent Developments in Well-Posed Variational Problems, Mathematics and Its Applications, vol. 331, pp. 1–27. Springer, Netherlands (1995)Google Scholar
  14. 14.
    Camilli, F., Falcone, M.: Approximation of control problems involving ordinary and impulsive controls. ESAIM Control Optim. Calc. Var. 4, 159–176 (electronic) (1999)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Cannarsa, P., Frankowska, H., Marchini, E.: Existence and Lipschitz regularity of solutions to Bolza problems in optimal control. Trans. Am. Math. Soc. 361(9), 4491–4517 (2009)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Cannarsa, P., Sinestrari, C.: Semiconcave functions, Hamilton-Jacobi equations, and optimal control. Progress in Nonlinear Differential Equations and their Applications, 58. Birkhäuser Boston Inc., Boston (2004)Google Scholar
  17. 17.
    Caponigro, M., Ghezzi, R., Piccoli, B., Trélat, E.: Regularization of chattering phenomena via bounded variation controls (2014). arXiv:1303.5796
  18. 18.
    Catllá, A., Schaeffer, D., Witelski, T., Monson, E., Lin, A.: On spiking models for synaptic activity and impulsive differential equations. SIAM Rev. 50(3), 553–569 (2008)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Cesari, L.: Optimization theory and applications. In: Applications of Mathematics (New York), vol. 17. Springer, New York. Problems with ordinary differential equations (1983)Google Scholar
  20. 20.
    Cheng, C.W., Mizel, V.: On the Lavrentiev phenomenon for optimal control problems with second-order dynamics. SIAM J. Control Optim. 34(6), 2172–2179 (1996)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Clarke, F., Vinter, R.: Regularity properties of solutions to the basic problem in the calculus of variations. Trans. Am. Math. Soc. 289(1), 73–98 (1985)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Clarke, F., Vinter, R.: Regularity properties of optimal controls. SIAM J. Control. Optim. 28(4), 980–997 (1990)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Dykhta, V.: The variational maximum principle and quadratic conditions for the optimality of impulse and singular processes. Sibirsk. Mat. Zh. 35(1), 70–82, ii (1994)MathSciNetGoogle Scholar
  24. 24.
    Gajardo, P., Ramirez, C.H., Rapaport, A.: Minimal time sequential batch reactors with bounded and impulse controls for one or more species. SIAM J. Control Optim. 47(6), 2827–2856 (2008)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Guerra, M., Sarychev, A.: Fréchet generalized trajectories and minimizers for variational problems of low coercivity. J. Dyn. Control. Syst. 1–27 (2014)Google Scholar
  26. 26.
    Lavrentiev, M.A.: Sur quelques problèmes du calcul des variations. Ann. Mat. Pura Appl. 4(2), 9–28 (1927)Google Scholar
  27. 27.
    Miller, B., Rubinovich, E.: Impulsive Control in Continuous and Discrete-Continuous Systems. Kluwer Academic/Plenum Publishers, New York (2003)CrossRefMATHGoogle Scholar
  28. 28.
    Motta, M., Rampazzo, F.: Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls. Differ. Integral Equ. 8(2), 269–288 (1995)MATHMathSciNetGoogle Scholar
  29. 29.
    Motta, M., Rampazzo, F.: Dynamic programming for nonlinear systems driven by ordinary and impulsive controls. SIAM J. Control Optim. 34(1), 199–225 (1996)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Motta, M., Rampazzo, F.: Asymptotic controllability and optimal control. J. Differ. Equ. 254(7), 2744–2763 (2013). doi:10.1016/j.jde.2013.01.006 CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Motta, M., Sartori, C.: Uniqueness results for boundary value problems arising from finite fuel and other singular and unbounded stochastic control problems. Discrete Contin. Dyn. Syst. 21(2), 513–535 (2008)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Pereira, F., Silva, G.: Necessary conditions of optimality for vector-valued impulsive control problems. Syst. Control Lett. 40(3), 205–215 (2000)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Rishel, R.: An extended Pontryagin principle for control systems whose control laws contain measures. J. Soc. Ind. Appl. Math. Ser. A Control 3, 191–205 (1965)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Sarychev, A.: Nonlinear systems with impulsive and generalized function controls. In: Nonlinear Synthesis (Sopron, 1989), Progr. Systems Control Theory, vol. 9, pp. 244–257. Birkhäuser Boston, Boston (1991)Google Scholar
  35. 35.
    Sarychev, A., Torres, D.: Lipschitzian regularity of minimizers for optimal control problems with control-affine dynamics. Appl. Math. Optim. 41(2), 237–254 (2000)CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Silva, G., Vinter, R.: Measure driven differential inclusions. J. Math. Anal. Appl. 202(3), 727–746 (1996)CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Silva, G., Vinter, R.: Necessary conditions for optimal impulsive control problems. SIAM J. Control Optim. 35(6), 1829–1846 (1997)CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Whitney, H.: Functions differentiable on the boundaries of regions. Ann. Math. 35(3), 482–485 (1934)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Wolenski, P., żabić, S.: A sampling method and approximation results for impulsive systems. SIAM J. Control Optim. 46(3), 983–998 (2007)CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Zaslavski, A.: Nonoccurrence of the Lavrentiev phenomenon for many optimal control problems, vol. 45, pp 1116–1146 (electronic) (2006)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • M.-Soledad Aronna
    • 1
  • Monica Motta
    • 2
  • Franco Rampazzo
    • 2
  1. 1.IMPARio de JaneiroBrazil
  2. 2.Dipartimento di MatematicaUniversità di PadovaPadovaItaly

Personalised recommendations