Skip to main content
Log in

Calmness of the Feasible Set Mapping for Linear Inequality Systems

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

In this paper we deal with parameterized linear inequality systems in the n-dimensional Euclidean space, whose coefficients depend continuosly on an index ranging in a compact Hausdorff space. The paper is developed in two different parametric settings: the one of only right-hand-side perturbations of the linear system, and that in which both sides of the system can be perturbed. Appealing to the backgrounds on the calmness property, and exploiting the specifics of the current linear structure, we derive different characterizations of the calmness of the feasible set mapping, and provide an operative expresion for the calmness modulus when confined to finite systems. In the paper, the role played by the Abadie constraint qualification in relation to calmness is clarified, and illustrated by different examples. We point out that this approach has the virtue of tackling the calmness property exclusively in terms of the system’s data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azé, D., Corvellec, J.-N.: Characterizations of error bounds for lower semicontinuous functions on metric spaces. ESAIM Control Optim. Calc. Var. 10, 409–425 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cánovas, M.J., Dontchev, A.L., López, M.A., Parra, J.: Metric regularity of semi-infinite constraint systems. Math. Program. B 104, 329–346 (2005)

    Article  MATH  Google Scholar 

  3. Cánovas, M.J., Gómez-Senent, F.J., Parra, J.: Regularity modulus of arbitrarily perturbed linear inequality systems. J. Math. Anal. Appl. 343, 315–327 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings: A View from Variational Analysis. Springer, New York (2009)

    Book  Google Scholar 

  5. Fabian, M., Henrion, R., Kruger, A.Y., Outrata, J.: About error bounds in metric spaces. In: Operations Research Proceeding 2011. Selected Paper of the International Conference Operations Research (OR 2011), August 30, September 2, 2011, Zurich, Switzerland, pp. 33–38. Springer, Berlin (2012)

  6. Gfrerer, H.: First order and second order characterizations of metric subregularity and calmness of constraint set mappings. SIAM J. Optim. 21, 1439–1474 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Goberna, M.A., López, M.A.: Linear Semi-Infinite Optimization. Wiley, Chichester (1998)

    MATH  Google Scholar 

  8. Henrion, R., Jourani, A., Outrata, J.: On the calmness of a class of multifunctions. SIAM J. Optim. 13, 603–618 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Henrion, R., Klatte, D.: Regularity and stability in nonlinear semi-infinite optimization. In: Reemtsen, R., Rückmann, J.-J. (eds.) Semi-Infinite Programming. Kluwer (1998)

  10. Henrion, R., Outrata, J.: Calmness of constraint systems with applications. Math. Program. 104B, 437–464 (2005)

    Article  MathSciNet  Google Scholar 

  11. Ioffe, A.D.: Necessary and sufficient conditions for a localminimum, part I: a reduction theorem and first order conditions. SIAM J. Control Optim. 17, 245–250 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ioffe, A.D.: Metric regularity and subdifferential calculus. Uspehi Mat. Nauk 55(3), 103–162 (2000). (in Russian), English translation: Russian Math. Surveys 55(3), 501–558 (2000)

  13. Jourani, A.: Hoffman’s error bound, local controllability, and sensitivity analysis. SIAM J. Control Optim. 38, 947–970 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Klatte, D., Kummer, B.: Nonsmooth equations in optimization: regularity, calculus, methods and applications. Nonconvex Optimization and Applications 60. Kluwer, Dordrecht (2002)

    Google Scholar 

  15. Klatte, D., Kummer, B.: Optimization methods and stability of inclusions in Banach spaces. Math. Program. B 117, 305–330 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Klatte, D., Thiere, G.: Error bounds for solutions of linear equations and inequalities. Math. Methods Oper. Res. 41, 191–214 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kruger, A., Van Ngai, H., Théra, M.: Stability of error bounds for convex constraint systems in Banach spaces. SIAM J. Optim. 20, 3280–3296 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Li, W.: The sharp Lipschitz constants for feasible and optimal solutions of a perturbed linear program. Linear Algebra Appl. 187, 15–40 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  19. Li, W.: Sharp Lipschitz constants for basic optimal solutions and basic feasible solutions of linear programs. SIAM J. Control Optim. 32, 140–153 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory. Springer, Berlin (2006)

    Google Scholar 

  21. Robinson, S.M.: Some continuity properties of polyhedral multifunctions. In: Mathematical programming at Oberwolfach (Proc. Conf. Math. Forschungsinstitut, Oberwolfach, 1979). Math. Program. Stud. No. 14, pp. 206–214 (1981)

  22. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  23. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  24. Zheng, X.Y., Ng, K.F.: Metric regularity and constraint qualifications for convex inequalities on Banach spaces. SIAM J. Optim. 14, 757–772 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Parra.

Additional information

This research has been partially supported by Grants MTM2011-29064-C03 (02-03) from MINECO, Spain, ACOMP/2013/062 from Generalitat Valenciana, Spain, and Grant DP110102011 from the Australian Research Council

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cánovas, M.J., López, M.A., Parra, J. et al. Calmness of the Feasible Set Mapping for Linear Inequality Systems. Set-Valued Var. Anal 22, 375–389 (2014). https://doi.org/10.1007/s11228-014-0272-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-014-0272-9

Keywords

Mathematics Subject Classifications (2010)

Navigation