Skip to main content
Log in

Maximality of the Sum of a Maximally Monotone Linear Relation and a Maximally Monotone Operator

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

The most famous open problem in Monotone Operator Theory concerns the maximal monotonicity of the sum of two maximally monotone operators provided that Rockafellar’s constraint qualification holds. In this paper, we prove the maximal monotonicity of A + B provided that A, B are maximally monotone and A is a linear relation, as soon as Rockafellar’s constraint qualification holds: \({\operatorname{dom}}\,A\cap{\operatorname{int}}\,{\operatorname{dom}}\,B\neq\varnothing\). Moreover, A + B is of type (FPV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauschke, H.H., Borwein, J.M., Wang, X., Yao, L.: The Brezis–Browder theorem in a general Banach space. J. Funct. Anal. 262, 4948–4971 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  MATH  Google Scholar 

  3. Bauschke, H.H., Wang, X., Yao, L.: An answer to S. Simons’ question on the maximal monotonicity of the sum of a maximal monotone linear operator and a normal cone operator. Set-Valued Var. Anal 17, 195–201 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauschke, H.H., Wang, X., Yao, L.: On the maximal monotonicity of the sum of a maximal monotone linear relation and the subdifferential operator of a sublinear function. In: Proceedings of the Haifa Workshop on Optimization Theory and Related Topics. Contemp. Math., vol. 568, pp. 19–26. Amer. Math. Soc., Providence (2012)

    Chapter  Google Scholar 

  5. Borwein, J.M.: Maximal monotonicity via convex analysis. J. Convex Anal. 13, 561–586 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Borwein, J.M.: Maximality of sums of two maximal monotone operators in general Banach space. In: Proceedings of the American Mathematical Society, vol. 135, pp. 3917–3924 (2007)

  7. Borwein, J.M.: Fifty years of maximal monotonicity. Optim. Lett. 4, 473–490 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borwein, J.M., Vanderwerff, J.D.: Convex Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  9. Borwein, J.M., Yao, L.: Structure theory for maximally monotone operators with points of continuity. J. Optim. Theory Appl. 156, 1–24 (2013) (invited paper)

    Article  MathSciNet  Google Scholar 

  10. Borwein, J.M., Yao, L.: Recent progress on monotone operator theory. Infinite Products of Operators and Their Applications, Contemporary Mathematics, in press. http://arxiv.org/abs/1210.3401v2 (2012). Accessed Oct 2012

  11. Burachik, R.S., Iusem, A.N.: Set-Valued Mappings and Enlargements of Monotone Operators. Springer, New York (2008)

    Google Scholar 

  12. Butnariu, D., Iusem, A.N.: Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization. Kluwer Academic Publishers (2000)

  13. Fitzpatrick, S.: Representing monotone operators by convex functions. In: Workshop/Miniconference on Functional Analysis and Optimization (Canberra 1988). Proceedings of the Centre for Mathematical Analysis, Australian National University, Canberra, Australia, vol. 20, pp. 59–65 (1988)

  14. Marques Alves, M., Svaiter, B.F.: A new qualification condition for the maximality of the sum of maximal monotone operators in general Banach spaces. J. Convex Anal. 19, 575–589 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability, 2nd edn. Springer, New York (1993)

    MATH  Google Scholar 

  16. Rockafellar, R.T.: Local boundedness of nonlinear, monotone operators. Mich. Math. J. 16, 397–407 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75–88 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, 3nd printing. Springer, New York (2009)

    Google Scholar 

  19. Rudin, R.: Functional Analysis, 2nd edn. McGraw-Hill, New York (1991)

    MATH  Google Scholar 

  20. Simons, S.: Minimax and Monotonicity. Springer, New York (1998)

    Google Scholar 

  21. Simons, S.: From Hahn–Banach to Monotonicity. Springer, New York (2008)

    MATH  Google Scholar 

  22. Verona, A., Verona, M.E.: Regular maximal monotone operators. Set-Valued Anal. 6, 303–312 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Verona, A., Verona, M.E.: Regular maximal monotone operators and the sum theorem. J. Convex Anal. 7, 115–128 (2000)

    MathSciNet  MATH  Google Scholar 

  24. Verona, A., Verona, M.E.: On the regularity of maximal monotone operators and related results. http://arxiv.org/abs/1212.1968v3 (2012). Accessed Dec 2012

  25. Voisei, M.D.: The sum and chain rules for maximal monotone operators. Set-Valued Var. Anal 16, 461–476 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Voisei, M.D., Zălinescu, C.: Strongly-representable monotone operators. J. Convex Anal. 16, 1011–1033 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Voisei, M.D., Zălinescu, C.: Maximal monotonicity criteria for the composition and the sum under weak interiority conditions. Math. Program. (Series B) 123, 265–283 (2010)

    Article  MATH  Google Scholar 

  28. Yao, L.: The sum of a maximal monotone operator of type (FPV) and a maximal monotone operator with full domain is maximally monotone. Nonlinear Anal. 74, 6144–6152 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yao, L.: The sum of a maximally monotone linear relation and the subdifferential of a proper lower semicontinuous convex function is maximally monotone. Set-Valued Var. Anal 20, 155–167 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yao, L.: On Monotone Linear Relations and the Sum Problem in Banach Spaces. Ph.D. thesis, University of British Columbia, Okanagan (2011). http://hdl.handle.net/2429/39970. Accessed Jan 2012

  31. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  32. Zeidler, E.: Nonlinear Functional Analysis and its Applications II/A: Linear Monotone Operators. Springer, New York (1990)

    Book  MATH  Google Scholar 

  33. Zeidler, E.: Nonlinear Functional Analysis and its Applications II/B: Nonlinear Monotone Operators. Springer, New York (1990)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangjin Yao.

Additional information

Dedicated to Petar Kenderov on the occasion of his seventieth birthday.

J. M. Borwein was Laureate Professor at the University of Newcastle and Distinguished Professor at King Abdul-Aziz University, Jeddah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borwein, J.M., Yao, L. Maximality of the Sum of a Maximally Monotone Linear Relation and a Maximally Monotone Operator. Set-Valued Var. Anal 21, 603–616 (2013). https://doi.org/10.1007/s11228-013-0259-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-013-0259-y

Keywords

Mathematics Subject Classifications (2010)

Navigation