Skip to main content
Log in

Directional Lipschitzness of Minimal Time Functions in Hausdorff Topological Vector Spaces

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

In a general Hausdorff topological vector space E, we associate to a given nonempty closed set S ⊂ E and a bounded closed set Ω ⊂ E, the minimal time function T S defined by \(T_{S,\Omega}(x):= \inf \{ t> 0: S\cap (x+t\Omega)\not = \emptyset\}\). The study of this function has been the subject of various recent works (see Bounkhel (2012, submitted, 2013, accepted); Colombo and Wolenski (J Global Optim 28:269–282, 2004, J Convex Anal 11:335–361, 2004); He and Ng (J Math Anal Appl 321:896–910, 2006); Jiang and He (J Math Anal Appl 358:410–418, 2009); Mordukhovich and Nam (J Global Optim 46(4):615–633, 2010) and the references therein). The main objective of this work is in this vein. We characterize, for a given Ω, the class of all closed sets S in E for which T S is directionally Lipschitz in the sense of Rockafellar (Proc Lond Math Soc 39:331–355, 1979). Those sets S are called Ω-epi-Lipschitz. This class of sets covers three important classes of sets: epi-Lipschitz sets introduced in Rockafellar (Proc Lond Math Soc 39:331–355, 1979), compactly epi-Lipschitz sets introduced in Borwein and Strojwas (Part I: Theory, Canad J Math No. 2:431–452, 1986), and K-directional Lipschitz sets introduced recently in Correa et al. (SIAM J Optim 20(4):1766–1785, 2010). Various characterizations of this class have been established. In particular, we characterize the Ω-epi-Lipschitz sets by the nonemptiness of a new tangent cone, called Ω-hypertangent cone. As for epi-Lipschitz sets in Rockafellar (Canad J Math 39:257–280, 1980) we characterize the new class of Ω-epi-Lipschitz sets with the help of other cones. The spacial case of closed convex sets is also studied. Our main results extend various existing results proved in Borwein et al. (J Convex Anal 7:375–393, 2000), Correa et al. (SIAM J Optim 20(4):1766–1785, 2010) from Banach spaces and normed spaces to Hausdorff topological vector spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Borwein, J.M., Lucet, Y., Mordukhovich, B.: Compactly epi-Lipschitzian convex sets and functions in normed spaces. J. Convex Anal. 7, 375–393 (2000)

    MATH  MathSciNet  Google Scholar 

  2. Borwein, J.M., Strojwas, H.M.: Proximal analysis and boundaries of closed sets in Banach space. Part I: Theory, Canad. J. Math. No. 2, 431–452 (1986)

    MathSciNet  Google Scholar 

  3. Bounkhel, M.: Regularity Concepts in Nonsmooth Analysis, Theory and Applications. Springer Optimization and Its Applications, vol. 59 (2012)

  4. Cannarsa, P.M., Sinestri, C.: Semiconvex Functions, Hamilton-Jacobi Equations, and Optimal Control. Birkhausser, Boston (2004)

    Google Scholar 

  5. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983)

    MATH  Google Scholar 

  6. Colombo, G., Wolenski, P.R.: The subgradient formula for the minimal time function in the case of constant dynamics in Hilbert space. J. Global Optim. 28, 269–282 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Colombo, G., Wolenski, P.R.: Variational analysis for a class of minimal time functions in Hilbert spaces. J. Convex Anal. 11, 335–361 (2004)

    MATH  MathSciNet  Google Scholar 

  8. Correa, R., Gajardo, P., Thibault, L.: Various Lipschitz like properties for functions and sets I: directional derivatives and tangential characterizations. SIAM J. Optim. 20(4), 1766–1785 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Correa, R., Gajardo, P., Thibault, L.: Links between directional derivatives through multidirectional mean value inequalities. Math. Program., Ser. B 116, 57–77 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. De Blasi, F.S., Myjak, J.: On a generalized best approximation problem. J. Approx. Theory 94, 54–72 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. He, Y., Ng, K.F.: Subdifferentials of a minimum time function in Banach spaces. J. Math. Anal. Appl. 321, 896–910 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jiang, Y., He, Y.: Subdifferentials of a minimum time function in normed spaces. J. Math. Anal. Appl. 358, 410–418 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mordukhovich, B.S., Nam, N.M.: Limiting subgradients of minimal time functions in Banach spaces. J. Global Optim. 46(4), 615–633 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mordukhovich, B.S., Nam, N.M.: Subgradients of minimal time functions under minimal assumptions. J. Convex Anal. 18, 915–947 (2011)

    MATH  MathSciNet  Google Scholar 

  15. Nam, N.M., Villalobos, M.C., Thai An, N.: Minimal time functions and the smallest intersecting ball problem with unbounded dynamics. J. Optim. Theory Appl. 154, 768–791 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Penot, J.P.: Calcul sous-différentiel et optimisation. J. Funct. Anal. 27, 248–276 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rockafellar, R.T.: Genaralized directional derivatives and subgradients of nonconvex functions. Canad. J. Math. 39, 257–280 (1980)

    Article  MathSciNet  Google Scholar 

  18. Rockafellar, R.T.: Directionally Lipschitzian functions and subdifferential calculus. Proc. London Math. Soc. 39, 331–355 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  19. Rockafellar, R.T.: Clarke’s tangent cones and the boundaries of closed sets in \({I\hspace{-.7ex}R}^n\). Nonlinear-Anal. 3(1), 145–154 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rudin, W.: Functional Analysis. McGraw-Hill, New York (1973)

    MATH  Google Scholar 

  21. Soravia, P.: Generalized motion of a front propagating along its normal direction: a differential games approach. Nonlinear Anal. 22, 1247–1262 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wolenski, P.R., Yu, Z.: Proximal analysis and the minimal time function. SIAM J. Control Optim. 36, 1048–1072 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Messaoud Bounkhel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bounkhel, M. Directional Lipschitzness of Minimal Time Functions in Hausdorff Topological Vector Spaces. Set-Valued Var. Anal 22, 221–245 (2014). https://doi.org/10.1007/s11228-013-0247-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-013-0247-2

Keywords

Mathematics Subject Classifications (2010)

Navigation