Abstract
In this paper, we introduce and develop the theory of restricted normal cones which generalize the classical Mordukhovich normal cone. We thoroughly study these objects from the viewpoint of constraint qualifications and regularity. Numerous examples are provided to illustrate the theory. This work provides the theoretical underpinning for a subsequent article in which these tools are applied to obtain a convergence analysis of the method of alternating projections for nonconvex sets.
This is a preview of subscription content, access via your institution.
References
Bauschke, H.H., Borwein, J.M., Lewis, A.S.: The method of cyclic projections for closed convex sets in Hilbert space. In: Censor, Y., Reich, S. (eds.) Recent Developments in Optimization Theory and Nonlinear Analysis (Jerusalem 1995), Contemporary Mathematics vol. 204, pp. 1–38. American Mathematical Society (1997)
Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer (2011)
Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and sparsity optimization with affine constraints. Found. Comput. Math. (2012, in press). arXiv preprint http://arxiv.org
Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted Normal Cones and the Method of Alternating Projections: Applications. preprint (2013). doi:10.1007/s11228-013-0238-3
Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis. Springer-Verlag (2005)
Censor, Y., Zenios, S.A.: Parallel Optimization. Oxford University Press (1997)
Clarke, F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer-Verlag (1998)
Deutsch, F.: The angle between subspaces of a Hilbert space. In: Approximation Theory, Wavelets and Applications (Maratea, 1994). NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences vol. 454, pp. 107–130. Kluwer (1995)
Deutsch, F.: Best Approximation in Inner Product Spaces. Springer (2001)
Dixmier, J.: Étude sur les variétés et les opérateurs de Julia, avec quelques applications. Bull. Soc. Math. Fr. 77, 11–101 (1949)
Friedrichs, K.: On certain inequalities and characteristic value problems for analytic functions and for functions of two variables. Trans. Amer. Math. Soc. 41, 321–364 (1937)
Lewis, A.S., Luke, D.R., Malick, J.: Local linear convergence for alternating and averaged nonconvex projections. Found. Comput. Math. 9, 485–513 (2009)
Lewis, A.S., Malick, J.: Alternating projection on manifolds. Mathematics of Operations Research 33, 216–234 (2008)
Loewen, P.D.: Optimal Control via Nonsmooth Analysis. CRM Proceedings & Lecture Notes, AMS, Providence, RI (1993)
Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I. Springer-Verlag (2006)
Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
Rockafellar, R.T.,Wets, R.J-B.: Variational Analysis. Springer, corrected 3rd printing (2009)
von Neumann, J.: Functional Operators Vol. II. The Geometry of Orthogonal Spaces. Annals of Mathematical Studies #22, Princeton University Press, Princeton (1950)
Wiener, N.: On the factorization of matrices. Commentarii Mathematici Helvetici 29, 97–111 (1955)
Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing (2002)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bauschke, H.H., Luke, D.R., Phan, H.M. et al. Restricted Normal Cones and the Method of Alternating Projections: Theory. Set-Valued Var. Anal 21, 431–473 (2013). https://doi.org/10.1007/s11228-013-0239-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11228-013-0239-2
Keywords
- Constraint qualification
- Convex set
- Friedrichs angle
- Normal cone
- Nonconvex set
- Projection operator
- Restricted normal cone
- Superregularity
Mathematics Subject Classifications (2010)
- Primary 49J52; Secondary 47H09
- 90C26