Skip to main content
Log in

A Multiplicity Result for an Elliptic Anisotropic Differential Inclusion Involving Variable Exponents

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

In this paper we are concerned with the study of a class of quasilinear elliptic differential inclusions involving the anisotropic \(\overrightarrow {p}(\cdot)\)-Laplace operator, on a bounded open subset of \({\mathbb R}^n\) which has a smooth boundary. The abstract framework required to study this kind of differential inclusions lies at the interface of three important branches in analysis: nonsmooth analysis, the variable exponent Lebesgue–Sobolev spaces theory and the anisotropic Sobolev spaces theory. Using the concept of nonsmooth critical point we are able to prove that our problem admits at least two non-trivial weak solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E., Mingione, G.: Gradient estimates for the p(x)-Laplacean system. J. Reine Angew. Math. 584, 117–148 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrei, I., Costea, N., Matei, A.: Antiplane shear deformation of piezoelectric bodies in contact with a conductive support. J. Global Optim. (2011). doi:10.1007/s10898-011-9815-x

    Google Scholar 

  3. Boureanu, M.M., Pucci, P., Rǎdulescu, V.: Multiplicity of solutions for a class of anisotropic elliptic equations with variable exponent. Complex Var. Elliptic Equ. 56, 755–767 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)

    MATH  Google Scholar 

  5. Chang, K.-C.: Variational methods for non-differentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80, 102–129 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image processing. SIAM J. Appl. Math. 66(4), 1383–1406 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  8. Costea, N., Mihǎilescu, M.: On an eigenvalue problem involving variable exponent growth conditions. Nonlinear Anal. 71, 4271–4278 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Costea, N., Varga, Cs.: Multiple critical points for non-differentiable parametrized functionals and applications to differential inclusions. J. Global Optim. (2011). doi:10.1007/s10898-011-9801-3

    MATH  Google Scholar 

  10. Costea, N., Varga, Cs.: Systems of nonlinear hemivariational inequalities and applications. Topol. Methods Nonlinear Anal. (2012, in press)

  11. Diening, L.: Theoretical and Numerical Results for Electrorheological Fluids. Ph.D. Thesis, University of Freiburg, Germany (2002)

  12. Diening, L., Harjulehto, P., Hästö, P., Ružička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  13. Edmunds, D.E., Edmunds, R.M.: Embeddings of anisotropic Sobolev spaces. Arch. Ration. Mech. Anal. 94(3), 245–252 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fan, X.L.: Anisotropic variable exponent Sobolev spaces and \(\overrightarrow{p}(x)\)-Laplacian equations. Complex Var. Elliptic Equ. 56, 623–642 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fan, X.L., Zhang, Q.H.: Existence of solutions for p(x)-Laplacian Dirichlet problem. Nonlinear Anal. T.M.A. 52, 1843–1853 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Halsey, T.C.: Electrorheological fluids. Science 258, 761–766 (1992)

    Article  Google Scholar 

  17. Kováčik, O., Rákosník, J.: On spaces L p(x) and W 1,p(x). Czechoslovak Math. J. 41, 592–618 (1991)

    MathSciNet  Google Scholar 

  18. Kristály, A., Rǎdulescu, V., Varga, Cs.: Variational principles in mathematical physics, geometry, and economics: qualitative analysis of nonlinear equations and unilateral problems. Encyclopedia of Mathematics and its Applications, no. 136. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  19. Lebourg, G.: Valeur moyenne pour gradient généralisé. C. R. Acad. Sci. Paris 281, 795–797 (1975)

    MathSciNet  MATH  Google Scholar 

  20. Mihǎilescu, M., Rǎdulescu, V.: A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc. R. Soc. London Ser. A 462, 2625–2641 (2006)

    Article  Google Scholar 

  21. Mihǎilescu, M., Rǎdulescu, V.: On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent. Proc. Am. Math. Soc. 135, 2929–2937 (2007)

    Article  Google Scholar 

  22. Mihǎilescu, M., Pucci, P. Rǎdulescu, V.: Nonhomogeneous boundary value problems in anisotropic Sobolev spaces. C. R. Acad. Sci. Paris, Ser. I 345, 561–566 (2007)

    Article  Google Scholar 

  23. Mihǎilescu, M., Pucci, P., Rǎdulescu, V.: Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponents. J. Math. Anal. Appl. 340, 687–698 (2008)

    Article  MathSciNet  Google Scholar 

  24. Mihǎilescu, M., Moroşanu, G., Rǎdulescu, V.: Eigenvalue problems in anisotropic Orlicz–Sobolev spaces. C. R. Acad. Sci. Paris, Ser. I 347, 521–526 (2009)

    Article  Google Scholar 

  25. Mihǎilescu, M., Moroşanu, G., Rǎdulescu, V.: Eigenvalue problems for anisotropic elliptic equations: An Orlicz–Sobolev space setting. Nonlinear Anal. 73, 3239–3253 (2010)

    Article  MathSciNet  Google Scholar 

  26. Mihǎilescu, M., Moroşanu, G.: Existence and multiplicity of solutions for an anisotropic elliptic problem involving variable exponent growth conditions. Appl. Anal. 89(2), 257–271 (2010)

    Article  MathSciNet  Google Scholar 

  27. Motreanu, D., Panagiotopoulos, P.D.: Minimax theorems and qualitative properties of the solutions of hemivariational inequalities and applications. Nonconvex Optimization and its Applications, vol. 29. Kluwer, Boston (1999)

    Google Scholar 

  28. Motreanu, D., Rădulescu, V.: Variational and Non-variational Methods in Nonlinear Analysis and Boundary Value Problems. Kluwer, Boston (2003)

    Book  MATH  Google Scholar 

  29. Motreanu, D., Varga, Cs.: Some critical point results for locally Lipschitz functionals. Comm. Appl. Nonlinear Anal. 4, 17–33 (1997)

    MathSciNet  MATH  Google Scholar 

  30. Nikol’skii, S.M.: On imbedding, continuation and approximation theorems for differentiable functions of several variables. Russian Math. Surveys 16, 55–104 (1961)

    Article  Google Scholar 

  31. Naniewicz, Z., Panagiotopoulos, P.D.: Mathematical Theory of Hemivariational Inequalities and Applications. Marcel Dekker, New York (1995)

    Google Scholar 

  32. Panagiotopoulos, P.D.: Nonconvex energy functions. Hemivariational inequalities and substationarity principles. Acta Mech. 42, 160–183 (1983)

    MathSciNet  Google Scholar 

  33. Rákosník, J.: Some remarks to anisotropic Sobolev spaces: I. Beiträge zur Anal. 13, 55–68 (1979)

    MATH  Google Scholar 

  34. Rákosník, J.: Some remarks to anisotropic Sobolev spaces: II. Beiträge zur Anal. 15, 127–140 (1981)

    MATH  Google Scholar 

  35. Ricceri, B.: A further three critical points theorem. Nonlinear Anal. 71, 4151–4157 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ruzicka, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Springer, Berlin (2002)

    Google Scholar 

  37. Stancu-Dumitru, D.: Multiplicity of solutions for anisotropic quasilinear elliptic equations with variable exponents. Bull. Belg. Math. Soc. Simon Stevin 17, 875–889 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Stancu-Dumitru, D.: Two nontrivial solutions for a class of anisotropic variable exponent problems. Taiwanese J. Math. 16, 1205–1219 (2012)

    MathSciNet  MATH  Google Scholar 

  39. Struwe, M.: Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  40. Troisi, M.: Teoremi di inclusione per spazi di Sobolev non isotropi. Ric. Mat. 18, 3–24 (1969)

    MathSciNet  MATH  Google Scholar 

  41. Zhikov, V.: Averaging of functionals in the calculus of variations and elasticity. Math. USSR Izv. 29, 33–66 (1987)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicuşor Costea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costea, N., Moroşanu, G. A Multiplicity Result for an Elliptic Anisotropic Differential Inclusion Involving Variable Exponents. Set-Valued Var. Anal 21, 311–332 (2013). https://doi.org/10.1007/s11228-012-0224-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-012-0224-1

Keywords

Mathematics Subject Classifications (2010)

Navigation