Set-Valued and Variational Analysis

, Volume 20, Issue 3, pp 445–465 | Cite as

On Global Attractors of Multivalued Semiflows Generated by the 3D Bénard System

  • Alexey V. Kapustyan
  • Alexey V. Pankov
  • J. Valero


In this paper we prove the existence of solutions for the 3D Bénard system in the class of functions which are strongly continuous with respect to the second component of the vector (that is, the one corresponding to the parabolic equation). We construct then a multivalued semiflow generated by such solutions and obtain the existence of a global φ −attractor for the weak-strong topology. Moreover, a family of multivalued semiflows is defined on suitable convex bounded subsets of the phase space, proving for them the existence of a global attractor (which is the same for every semiflow of the family) for the weak-strong topology.


Three-dimensional Boussinesq equations Bénard problem Three-dimensional Navier–Stokes equations Set-valued dynamical system Global attractor 

Mathematics Subject Classifications (2010)

35B40 35B41 35K55 35Q30 35Q35 37B25 58C06 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ball, J.: Continuity properties and global attractors of generalized semiflows and the Navier–Stokes equations. In: Mechanics: From Theory to Computation, pp. 447–474. Springer, New York (2000)CrossRefGoogle Scholar
  2. 2.
    Birnir, B., Svanstedt, N.: Existence theory and strong attractors for the Rayleigh–Bénard problem with a large aspect ratio. Discrete Contin. Dyn. Syst. 10, 53–74 (2004)MathSciNetMATHGoogle Scholar
  3. 3.
    Bondarevski, V.G.: Energetic systems and global attractors for the 3D Navier–Stokes equations. Nonlinear Anal. 30, 799–810 (1997)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chepyzhov, V.V., Vishik, M.I.: Evolution equations and their trajectory attractors. J. Math. Pures Appl. 76, 913–964 (1997)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Foias, C., Temam, R.: The connection between the Navier–Stokes equations, dynamical systems, and turbulence theory. In: Directions in Partial Differential Equations, pp. 55–73. Academic Press (1987)Google Scholar
  6. 6.
    Foias, C., Manley, O.P., Rosa, R.R., Temam, R.: Navier–Stokes Equations and Turbulence. Cambridge University Press, Cambridge (2001)MATHCrossRefGoogle Scholar
  7. 7.
    Ladyzhenskaya, O.A.: Attractors of Semigroups and Evolution Equations. Cambridge University Press, Cambridge (1991)CrossRefGoogle Scholar
  8. 8.
    Lions, J.L.: Quelques Méthodes de Résolutions des Problèmes Aux Limites Non Linéaires. Dunod, Gauthier-Villars, Paris (1969)Google Scholar
  9. 9.
    Kapustyan, A.V., Melnik, V.S., Valero, J.: Attractors of multivalued dynamical processes generated by phase-field equations. Int. J. Bifurc. Chaos 13, 1969–1984 (2003)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Kapustyan, O.V.: On existence of minimal weakly attracting set in the phase space for the 3-D Navier–Stokes system. Dopov. Nac. Akad. Nauk Ukr. 12, 18–22 (2005)MathSciNetGoogle Scholar
  11. 11.
    Kapustyan, O.V., Melnik, V.S., Valero, J., Yasinsky, V.V.: Global Attractors of Multivalued Dynamical Systems and Evolution Equations Without Uniqueness. Naukova Dumka, Kyiv (2008)Google Scholar
  12. 12.
    Kapustyan, O.V., Melnik, V.S., Valero, J.: A weak attractors and properties of solutions for the three-dimensional Bénard problem. Discrete Contin. Dyn. Syst. 18, 449–481 (2007)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Kapustyan, O.V., Valero, J.: Weak and strong attractors for the 3D Navier–Stokes system. J. Differ. Equ. 240, 249–278 (2007)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Melnik, V.S., Valero, J.: On attractors of multi-valued semi-flows and differential inclusions. Set-Valued Anal. 6, 83–111 (1998)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Norman, D.E.: Chemically reacting fluid flows: weak solutions and global attractors. J. Differ. Equ. 152, 75–135 (1999)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Robinson, J.: Infinite-Dimensional Dynamical Systems. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  17. 17.
    Sell, G.: Global attractors for the three-dimensional Navier–Stokes equations. J. Dyn. Differ. Equ. 8, 1–33 (1996)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Sell, G.R., You, Y.: Dynamics of Evolutionary Equations. Springer, New-York (2002)MATHGoogle Scholar
  19. 19.
    Simsen, J., Gentile, C.: On attractors for multivalued semigroups defined by generalized semiflows. Set-Valued Anal. 16, 105–124 (2008)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Temam, R.: Navier–Stokes Equations. North-Holland, Amsterdam (1979)Google Scholar
  21. 21.
    Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, New York (1988)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Alexey V. Kapustyan
    • 1
  • Alexey V. Pankov
    • 2
  • J. Valero
    • 3
  1. 1.Institute for Applied System Analysis NASU, NADOS LaboratoryTaras Shevchenko National University of KyivKyivUkraine
  2. 2.Taras Shevchenko National University of KyivKyivUkraine
  3. 3.Centro de Investigación OperativaUniversidad Miguel Hernandez de ElcheElche (Alicante)Spain

Personalised recommendations