Set-Valued and Variational Analysis

, Volume 19, Issue 2, pp 203–235 | Cite as

Optimal Control of Non-convex Measure-driven Differential Inclusions

Article

Abstract

Necessary conditions for optimality in control problems with differential-inclusion dynamics have recently been developed in the non-convex case by Clarke, Vinter, and others. Using appropriate reparametrizations of the time variable, we extend these results to systems whose dynamics involve a differential inclusion where a vector-valued measure appears. An auxiliary result central to our proof is an extension of existing free end-time necessary conditions to Clarke’s stratified framework.

Keywords

Optimal control Necessary conditions Impulsive systems Measure-driven dynamics 

Mathematics Subject Classifications (2010)

49N25 49K21 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arutyunov, A., Karamzin, D., Pereĭra, F.: A nondegenerate maximum principle for the impulse control problem with state constraints. SIAM J. Control Optim. 43(5), 1812–1843 (2005) (electronic)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bressan, A., Jr., Rampazzo, F.: Impulsive control systems with commutative vector fields. J. Optim. Theory Appl. 71(1), 67–83 (1991)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bressan, A., Jr., Rampazzo, F.: Impulsive control systems without commutativity assumptions. J. Optim. Theory Appl. 81(3), 435–457 (1994)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bressan, A., Rampazzo, F.: On differential systems with vector-valued impulsive controls. Boll. Unione Mat. Ital., B (7) 2(3), 641–656 (1988)MathSciNetMATHGoogle Scholar
  5. 5.
    Clarke, F.H.: Necessary conditions in dynamic optimization, chapter 3. Mem. AMS 173(816), 41–59 (2005)Google Scholar
  6. 6.
    Code, W.J.: Measure-driven impulsive systems: stabilization, optimal control and applications. Ph.D. thesis, University of British Columbia, Vancouver, Canada (2010)Google Scholar
  7. 7.
    Code, W.J., Silva, G.N.: Closed loop stability of measure-driven impulsive control systems. J. Dyn. Control Syst. 16(1), 1–21 (2010)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Dal Maso, G., Rampazzo, F.: On systems of ordinary differential equations with measures as controls. Differ. Integral Equ. 4(4), 739–765 (1991)MATHGoogle Scholar
  9. 9.
    Karamzin, D.Yu.: Necessary conditions of the minimum in an impulse optimal control problem. J. Math. Sci. 139(6), 7087–7150 (2006)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Lawden, D.F.: Optimal Trajectories for Space Navigation. Butterworth, London (1963)MATHGoogle Scholar
  11. 11.
    Miller, B.M., Rubinovich, E.Ya.: Impulsive Control in Continuous and Discrete–Continuous Systems. Kluwer Academic/Plenum Publishers, New York (2003)MATHGoogle Scholar
  12. 12.
    Pereira, F.L., Silva, G.N.: Stability for impulsive control systems. Dyn. Syst. 17(4), 421–434 (2002, Special issue: Non-smooth Dynamical Systems, Theory and Applications)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Pereira, F.L., Silva, G.N.: Necessary conditions of optimality for vector-valued impulsive control problems. Syst. Control Lett. 40(3), 205–215 (2000)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Rishel, R.W.: An extended Pontryagin principle for control systems whose control laws contain measures. J. Soc. Ind. Appl. Math. Ser. A Control 3, 191–205 (1965)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)MATHCrossRefGoogle Scholar
  16. 16.
    Silva, G.N., Vinter, R.B.: Measure driven differential inclusions. J. Math. Anal. Appl. 202(3), 727–746 (1996)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Silva, G.N., Vinter, R.B.: Necessary conditions for optimal impulsive control problems. SIAM J. Control Optim. 35(6), 1829–1846 (1997)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Vinter, R.: Optimal Control. Birkhäuser, Boston (2000)MATHGoogle Scholar
  19. 19.
    Warga, J.: Optimal Control of Differential and Functional Equations. Academic, New York (1972)MATHGoogle Scholar
  20. 20.
    Wolenski, P.R., Žabić, S.: A differential solution concept for impulsive systems. Dyn. Contin. Discrete Impuls. Syst. Ser. A, Math. Anal. 13B, 199–210 (2006)Google Scholar
  21. 21.
    Wolenski, P.R., Žabić, S.: A sampling method and approximation results for impulsive systems. SIAM J. Control Optim. 46(3), 983–998 (2007)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Žabić, S.: Impulsive systems. Ph.D. thesis, Louisiana State University, Baton Rouge, Louisiana, USA (2005)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of British ColumbiaVancouverCanada

Personalised recommendations