Abstract
The paper presents a general classification scheme of necessary and sufficient criteria for the error bound property incorporating the existing conditions. Several derivative-like objects both from the primal as well as from the dual space are used to characterize the error bound property of extended-real-valued functions on a Banach space.
Similar content being viewed by others
References
Azé, D.: A survey on error bounds for lower semicontinuous functions. In: Proceedings of 2003 MODE-SMAI Conference, ESAIM Proc., vol. 13, pp. 1–17. EDP Sci., Les Ulis (2003)
Azé, D.: A unified theory for metric regularity of multifunctions. J. Convex Anal. 13(2), 225–252 (2006)
Azé, D., Corvellec, J.N.: On the sensitivity analysis of Hoffman constants for systems of linear inequalities. SIAM J. Optim. 12(4), 913–927 (2002)
Azé, D., Corvellec, J.N.: Characterizations of error bounds for lower semicontinuous functions on metric spaces. ESAIM Control Optim. Calc. Var. 10(3), 409–425 (2004)
Bosch, P., Jourani, A., Henrion, R.: Sufficient conditions for error bounds and applications. Appl. Math. Optim. 50(2), 161–181 (2004)
Burke, J.V.: Calmness and exact penalization. SIAM J. Control Optim. 29(2), 493–497 (1991)
Burke, J.V., Deng, S.: Weak sharp minima revisited. I. Basic theory. Control Cybernet. 31(3), 439–469 (2002). Well-Posedness in Optimization and Related Topics (Warsaw, 2001)
Burke, J.V., Deng, S.: Weak sharp minima revisited. II. Application to linear regularity and error bounds. Math. Program., Ser. B 104(2–3), 235–261 (2005)
Burke, J.V., Ferris, M.C.: Weak sharp minima in mathematical programming. SIAM J. Control Optim. 31(5), 1340–1359 (1993)
Clarke, F.H.: A new approach to Lagrange multipliers. Math. Oper. Res. 1(2), 165–174 (1976)
Clarke, F.H.: Optimization and Nonsmooth Analysis. Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons Inc., New York, A Wiley-Interscience Publication (1983)
Cornejo, O., Jourani, A., Zălinescu, C.: Conditioning and upper-Lipschitz inverse subdifferentials in nonsmooth optimization problems. J. Optim. Theory Appl. 95(1), 127–148 (1997)
Corvellec, J.N., Motreanu, V.V.: Nonlinear error bounds for lower semicontinuous functions on metric spaces. Math. Program., Ser. A 114(2), 291–319 (2008)
De Giorgi, E., Marino, A., Tosques, M.: Problems of evolution in metric spaces and maximal decreasing curve. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 68(3), 180–187 (1980)
Deng, S.: Global error bounds for convex inequality systems in Banach spaces. SIAM J. Control Optim. 36(4), 1240–1249 (1998)
Dontchev, A.L., Rockafellar, R.T.: Regularity and conditioning of solution mappings in variational analysis. Set-Valued Anal. 12(1–2), 79–109 (2004)
Fabian, M., Habala, P., Hájek, P., Montesinos Santalucía, V., Pelant, J., Zizler, V.: Functional Analysis and Infinite-Dimensional Geometry. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 8. Springer-Verlag, New York (2001)
Henrion, R., Jourani, A.: Subdifferential conditions for calmness of convex constraints. SIAM J. Optim. 13(2), 520–534 (2002)
Henrion, R., Outrata, J.V.: A subdifferential condition for calmness of multifunctions. J. Math. Anal. Appl. 258(1), 110–130 (2001)
Henrion, R., Outrata, J.V.: Calmness of constraint systems with applications. Math. Program. 104(2–3, Ser. B), 437–464 (2005)
Hoffman, A.J.: On approximate solutions of systems of linear inequalities. J. Research Nat. Bur. Standards 49, 263–265 (1952)
Ioffe, A.D.: Necessary and sufficient conditions for a local minimum. I. A reduction theorem and first order conditions. SIAM J. Control Optim. 17(2), 245–250 (1979)
Ioffe, A.D.: Regular points of Lipschitz functions. Trans. Amer. Math. Soc. 251, 61–69 (1979)
Ioffe, A.D.: Metric regularity and subdifferential calculus. Russian Math. Surveys 55, 501–558 (2000)
Ioffe, A.D., Outrata, J.V.: On metric and calmness qualification conditions in subdifferential calculus. Set-Valued Anal. 16(2–3), 199–227 (2008)
Jourani, A.: Hoffman’s error bound, local controllability, and sensitivity analysis. SIAM J. Control Optim. 38(3), 947–970 (2000)
Jourani, A.: Weak regularity of functions and sets in Asplund spaces. Nonlinear Anal. 65(3), 660–676 (2006)
Jourani, A.: Radiality and semismoothness. Control Cybernet. 36(3), 669–680 (2007)
Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization, Nonconvex Optimization and its Applications, vol. 60. Kluwer Academic Publishers, Dordrecht (2002) Regularity, calculus, methods and applications
Klatte, D., Kummer, B.: Stability of inclusions: characterizations via suitable Lipschitz functions and algorithms. Optimization 55(5–6), 627–660 (2006)
Kruger, A.Y.: Generalized differentials of nonsmooth functions. Deposited in VINITI no. 1332–81. Minsk (1981, in Russian)
Kruger, A.Y.: ε-semidifferentials and ε-normal elements. Deposited in VINITI no. 1331-81. Minsk (1981, in Russian)
Kruger, A.Y.: Strict (ε,δ)-subdifferentials and extremality conditions. Optimization 51(3), 539–554 (2002)
Kruger, A.Y.: On Fréchet subdifferentials. J. Math. Sci. (N. Y.) 116(3), 3325–3358 (2003), Optimization and Related Topics, 3
Lewis, A.S., Pang, J.S.: Error bounds for convex inequality systems. In: Generalized Convexity, Generalized Monotonicity: Recent Results (Luminy, 1996), Nonconvex Optim. Appl., vol. 27, pp. 75–110. Kluwer Acad. Publ., Dordrecht (1998)
Łojasiewicz, S.: Sur le problème de la division. Studia Math. 18, 87–136 (1959)
Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15(6), 959–972 (1977)
Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. I: Basic Theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 330. Springer-Verlag, Berlin (2006)
Ng, K.F., Yang, W.H.: Regularities and their relations to error bounds. Math. Program., Ser. A 99, 521–538 (2004)
Ng, K.F., Zheng, X.Y.: Error bounds for lower semicontinuous functions in normed spaces. SIAM J. Optim. 12(1), 1–17 (2001)
Ngai, H.V., Kruger, A.Y., Théra, M.: Stability of error bounds for semi-infinite convex constraint systems. SIAM J. Optim. 20 (2010)
Ngai, H.V., Théra, M.: Error bounds in metric spaces and application to the perturbation stability of metric regularity. SIAM J. Optim. 19(1), 1–20 (2008)
Ngai, H.V., Théra, M.: Error bounds for systems of lower semicontinuous functions in Asplund spaces. Math. Program., Ser. B 116(1–2), 397–427 (2009)
Pang, J.S.: Error bounds in mathematical programming. Math. Programming, Ser. B 79(1–3), 299–332 (1997), Lectures on Mathematical Programming (ISMP97) (Lausanne, 1997)
Penot, J.P.: Error bounds, calmness and their applications in nonsmooth analysis (2010, to be published)
Polyak, B.T.: Introduction to Optimization. Translations Series in Mathematics and Engineering. Optimization Software Inc. Publications Division, New York (1987, translated from Russian)
Rockafellar, R.T.: Directionally Lipschitzian functions and subdifferential calculus. Proc. London Math. Soc. (3) 39(2), 331–355 (1979)
Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 317. Springer-Verlag, Berlin (1998)
Studniarski, M., Ward, D.E.: Weak sharp minima: characterizations and sufficient conditions. SIAM J. Control Optim. 38(1), 219–236 (1999)
Wu, Z., Ye, J.J.: Sufficient conditions for error bounds. SIAM J. Optim. 12(2), 421–435 (2001/02)
Wu, Z., Ye, J.J.: On error bounds for lower semicontinuous functions. Math. Program., Ser. A 92(2), 301–314 (2002)
Ye, J.J., Ye, X.Y.: Necessary optimality conditions for optimization problems with variational inequality constraints. Math. Oper. Res. 22(4), 977–997 (1997)
Author information
Authors and Affiliations
Corresponding author
Additional information
The research of Marian J. Fabian was supported by Institutional Research Plan of the Academy of Sciences of Czech Republic AVOZ 101 905 03, and by GAČR 201/07/0394.
The research of René Henrion was supported by the DFG Research Center Matheon “Mathematics for key technologies” in Berlin.
The main structure of the article was developed during Alexander Y. Kruger’s stay at the Institute of Information Theory and Automation of the Academy of Sciences of the Czech Republic in July–August 2008; this author is grateful to the Institute for support and hospitality.
The research of Jiří V. Outrata was supported by IAA 100750802 of the Grant Agency of the Czech Academy of Sciences.
Rights and permissions
About this article
Cite this article
Fabian, M.J., Henrion, R., Kruger, A.Y. et al. Error Bounds: Necessary and Sufficient Conditions. Set-Valued Anal 18, 121–149 (2010). https://doi.org/10.1007/s11228-010-0133-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11228-010-0133-0