Skip to main content

Subgradients of the Value Function to a Parametric Optimal Control Problem

Abstract

This paper studies the first-order behavior of the value function of a parametric optimal control problem with linear constraints and nonconvex cost functions. By establishing an abstract result on the Fréchet subdifferential of the value functions of a parametric mathematical programming problem, a new formula for computing the Fréchet subdifferential of the value function to a parametric optimal control problem is obtained.

This is a preview of subscription content, access via your institution.

References

  1. Alekseev, V.M., Tikhomirov, V.M., Fomin, S.V.: Optimal Control, Consultants Bureau. New York and London (1987)

  2. Aubin, J.-P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York (1984)

    MATH  Google Scholar 

  3. Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis. Springer, New York (2005)

    MATH  Google Scholar 

  4. Cernea, A., Frankowska, H.: A connection between the maximum principle and dynamic programming for constrained control problems. SIAM J. Control Optim. 44, 673–703 (2005)

    MATH  Article  MathSciNet  Google Scholar 

  5. Cesari, L.: Optimization Theory and Application. Springer, New York (1983)

    Google Scholar 

  6. Clarke, F.H.: Method of Dynamic and Nonsmooth Optimization. SIAM, Philadelphia (1989)

    Google Scholar 

  7. Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990)

    MATH  Google Scholar 

  8. Dacorogna, B.: Introduction to the Calculus of Variations. Imperial College Press, London (2004)

    MATH  Google Scholar 

  9. Ioffe, A.D., Tihomirov, V.M.: Theorey of Extremal Problems. North-Holand, Amsterdam (1979)

    Google Scholar 

  10. Ioffe, A.D.: Euler-Lagrange and Hamiltonian formalisms in dynamic optimization. Trans. Anc. Monum. Soc. 349, 2871–2900 (1997)

    MATH  Article  MathSciNet  Google Scholar 

  11. Kien, B.T., Liou, Y.C., Wong, N.-C., Yao, J.-C.: Subgradients of value functions in parametric dynamic programming. Eur. J. Oper. Res. 193, 12–22 (2009)

    MATH  Article  MathSciNet  Google Scholar 

  12. Mordukhovich, B.S.: Metric approximations and necessary optimality conditions for general classes of extremal problems. Sov. Math., Dokl. 22, 526–530 (1980)

    MATH  Google Scholar 

  13. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I, Basis Theory. Springer, New York (2006)

    Google Scholar 

  14. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation II, Applications. Springer, New York (2006)

    Google Scholar 

  15. Mordukhovich, B.S., Nam, N.M., Yen, N.D.: Subgradients of marginal functions in parametric mathematical programming. Math. Program. 116, 369–396 (2009)

    MATH  Article  MathSciNet  Google Scholar 

  16. Mordukhovich, B.S., Nam, N.M., Yen, N.D.: Fréchet subdifferential calculus and optimality conditions in nondifferetiable programming. Optimization 55, 685–708 (2006)

    MATH  Article  MathSciNet  Google Scholar 

  17. Mordukhovich, B.S., Nam, N.M.: Variational stability and marginal functions via generalized differentiation. Math. Oper. Res. 30, 800–816 (2005)

    MATH  Article  MathSciNet  Google Scholar 

  18. Moussaoui, M., Seeger, A.: Sensitivity analysis of optimal value functions of convex parametric programs with possibly empty solution sets. SIAM J. Optim. 4, 659–675 (1994)

    MATH  Article  MathSciNet  Google Scholar 

  19. Moussaoui, M., Seeger, A.: Epsilon-maximum principle of Pontryagin type and perturbation analysis of convex optimal control problems. SIAM J. Control Optim. 34, 407–427 (1996)

    MATH  Article  MathSciNet  Google Scholar 

  20. Penot, J.-P.: Differetiability properties of optimal value functions. Can. J. Math. 56, 825–842 (2004)

    MATH  MathSciNet  Google Scholar 

  21. Rockafellar, R.T., Wolenski, P.R.: Convexity in Hamilton-Jacobi theory I: dynamics and duality. SIAM J. Control Optim. 39, 1323–1350 (2000)

    MATH  Article  MathSciNet  Google Scholar 

  22. Rockafellar, R.T., Wolenski, P.R.: Convexity in Hamilton-Jacobi theory II: envelope representation. SIAM J. Control Optim. 39, 1351–1372 (2000)

    MATH  Article  MathSciNet  Google Scholar 

  23. Rockafellar, R.T.: Hamilton-Jacobi theory and parametric analysis in fully convex problems of optimal control. J. Glob. Optim. 248, 419–431 (2004)

    Article  MathSciNet  Google Scholar 

  24. Seeger, A.: Subgradient of optimal-value function in dynamic programming: the case of convex system without optimal paths. Math. Oper. Res. 21, 555–575 (1996)

    MATH  Article  MathSciNet  Google Scholar 

  25. Vinter, R.B.: Optimal Control. Birkhäuser, Boston (2000)

    MATH  Google Scholar 

  26. Vinter, R.B., Zheng, H.: Necessary conditions for optimal control problems with state constraints. Trans. Anc. Monum. Soc. 350, 1181–1204 (1998)

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. T. Kien.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Toan, N.T., Kien, B.T. Subgradients of the Value Function to a Parametric Optimal Control Problem. Set-Valued Anal 18, 183–203 (2010). https://doi.org/10.1007/s11228-009-0125-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-009-0125-0

Keywords

  • Parametric optimal control
  • Marginal function
  • Value function
  • Fréchet normal cone
  • Fréchet subgradient
  • Fréchet subdifferential
  • Coderivative

Mathematics Subject Classifications (2000)

  • 47J20
  • 49J40
  • 49J53
  • 90C33