Skip to main content
Log in

Turnpike Results for a Class of Discrete-Time Optimal Control Problems Arising in Economic Dynamics

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

In this paper we establish turnpike results for a class of discrete-time optimal control problems. These control problems arise in economic dynamics and describe a nonstationary model proposed by Robinson, Solow and Srinivasan. We study the structure of approximate solutions which is independent of the length of the interval, for all sufficiently large intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, B.D.O., Moore, J.B.: Linear Optimal Control. Prentice-Hall, Englewood Cliffs (1971)

    MATH  Google Scholar 

  2. Arkin, V.I., Evstigneev, I.V.: Probabilistic Models of Control and Economic Dynamics. Nauka, Moscow (1979)

    MATH  Google Scholar 

  3. Atsumi, H.: Neoclassical growth and the efficient program of capital accumulation. Rev. Econ. Stud. 32, 127–136 (1965)

    Article  Google Scholar 

  4. Aubry, S., Le Daeron, P.Y.: The discrete Frenkel-Kontorova model and its extensions I. Phys. D 8, 381–422 (1983)

    Article  MathSciNet  Google Scholar 

  5. Baumeister, J., Leitao, A., Silva, G.N.: On the value function for nonautonomous optimal control problem with infinite horizon. Syst. Control. Lett. 56, 188–196 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Blot, J., Cartigny, P.: Optimality in infinite-horizon variational problems under sign conditions. J. Optim. Theory Appl. 106, 411–419 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Blot, J., Hayek, N.: Sufficient conditions for infinite-horizon calculus of variations problems. ESAIM, COCV, Abr. 5, 279–292 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Blot, J., Hayek, N.: Conjugate points in infinite-horizon control problems. Automatica J. IFAC 37 (2001)

  9. Coleman, B.D., Marcus, M., Mizel, V.J.: On the thermodynamics of periodic phases. Arch. Ration. Mech. Anal. 117, 321–347 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Evstigneev, I.V., Flam, S.D.: Rapid growth paths in multivalued dynamical systems generated by homogeneous convex stochastic operators. Set-Valued Anal. 6, 61–81 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Evstigneev, I.V., Taksar, M.I.: Rapid growth paths in convex-valued random dynamical systems. Stoch. Dyn. 1, 493–509 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gale, D.: On optimal development in a multi-sector economy. Rev. Econ. Stud. 34, 1–18 (1967)

    Article  MathSciNet  Google Scholar 

  13. Glizer, V.: Infinite horizon quadratic control of linear singularly perturbed systems with small state delays: an asymptotic solution of Riccatti-type equation. IMA J. Math. Control Inf. 24, 435–459 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jasso-Fuentes, H., Hernandez-Lerma, O.: Characterizations of overtaking optimality for controlled diffusion processes. Appl. Math. Optim. 57, 349–369 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ali Khan, M., Zaslavski, A.J.: On a uniform turnpike of the third kind in the Robinson-Solow-Srinivasan Model. J. Econ. 92, 137–166 (2007)

    Article  MATH  Google Scholar 

  16. Ali Khan, M., Zaslavski, A.J.: Overtaking optimal programs in the RSS model without concavity. J. Math. Econ. (2009, in press)

  17. Leizarowitz, A.: Infinite horizon autonomous systems with unbounded cost. Appl. Math. Optim. 13, 19–43 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  18. Leizarowitz, A.: Tracking nonperiodic trajectories with the overtaking criterion. Appl. Math. Optim. 14, 155–171 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  19. Leizarowitz, A., Mizel, V.J.: One dimensional infinite horizon variational problems arising in continuum mechanics. Arch. Ration. Mech. Anal. 106, 161–194 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lykina, V., Pickenhain, S., Wagner, M.: Different interpretations of the improper integral objective in an infinite horizon control problem. J. Math. Anal. Appl. 340, 498–510 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Makarov, V.L., Rubinov, A.M.: Mathematical Theory of Economic Dynamics and Equilibria. Springer, New York (1977)

    MATH  Google Scholar 

  22. Marcus, M., Zaslavski, A.J.: The structure of extremals of a class of second order variational problems. Ann. Inst. Henri Poincáre Anal. Non linéaire 16, 593–629 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. McKenzie, L.W.: Turnpike theory. Econometrica 44, 841–866 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  24. McKenzie, L.W.: Classical General Equilibrium Theory. MIT, Cambridge (2002)

    Google Scholar 

  25. Mordukhovich, B.: Minimax design for a class of distributed parameter systems. Autom. Remote Control 50, 1333–1340 (1990)

    MathSciNet  Google Scholar 

  26. Mordukhovich, B., Shvartsman, I.: Optimization and feedback control of constrained parabolic systems under uncertain perturbations. In: Optimal Control, Stabilization and Nonsmooth Analysis. Lecture Notes Control Inform. Sci., pp. 121–132. Springer, New York (2004)

    Google Scholar 

  27. Nikaido, H.: Persistence of continual growth near the von Neumann ray: a strong version of the Radner turnpike theorem. Econometrica 32, 151–162 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  28. Pickenhain, S., Lykina, V.: Sufficiency conditions for infinite horizon optimal control problems. In: Recent Advances in Optimization. Proceedings of the 12th French-German-Spanish Conference on Optimization, Avignon, pp. 217–232. Springer (2006)

  29. Pickenhain, S., Lykina, V., Wagner, M.: On the lower semicontinuity of functionals involving Lebesgue or improper Riemann integrals in infinite horizon optimal control problems. Control Cybern. 37, 451–468 (2008)

    MathSciNet  Google Scholar 

  30. Prieto-Rumeau, T., Hernandez-Lerma, O.: Bias and overtaking equilibria for zero-sum continuous-time Markov games. Math. Methods Oper. Res. 61, 437–454 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Radner, R.: Path of economic growth that are optimal with regard only to final states; a turnpike theorem. Rev. Econ. Stud. 28, 98–104 (1961)

    Article  Google Scholar 

  32. Rubinov, A.M.: Superlinear Multivalued Mappings and their Applications in Economic Mathematical Problems. Nauka, Leningrad (1980)

    Google Scholar 

  33. Samuelson, P.A.: A catenary turnpike theorem involving consumption and the golden rule. Am. Econ. Rev. 55, 486–496 (1965)

    Google Scholar 

  34. von Weizsacker, C.C.: Existence of optimal programs of accumulation for an infinite horizon. Rev. Econ. Stud. 32, 85–104 (1965)

    Article  Google Scholar 

  35. Zaslavski, A.J.: Ground states in Frenkel-Kontorova model. Math. USSR, Izv. 29, 323–354 (1987)

    Article  Google Scholar 

  36. Zaslavski, A.J.: Optimal programs in the RSS model. Int. J. Econ. Theory 1, 151–165 (2005)

    Article  Google Scholar 

  37. Zaslavski, A.J.: Good programs in the RSS model with a nonconcave utility function. J. Ind. Manag. Optim. 2, 399–423 (2006)

    MATH  MathSciNet  Google Scholar 

  38. Zaslavski, A.J.: Turnpike Properties in the Calculus of Variations and Optimal Control. Springer, New York (2006)

    MATH  Google Scholar 

  39. Zaslavski, A.J.: Good solutions for a class of infinite horizon discrete-time optimal control problems. Taiwan. J. Math. (2009, in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander J. Zaslavski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaslavski, A.J. Turnpike Results for a Class of Discrete-Time Optimal Control Problems Arising in Economic Dynamics. Set-Valued Anal 17, 285–318 (2009). https://doi.org/10.1007/s11228-009-0118-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-009-0118-z

Keywords

Mathematics Subject Classification (2000)

Navigation