Skip to main content

Lower Semicontinuity of the Solution Map to a Parametric Generalized Variational Inequality in Reflexive Banach Spaces

Abstract

This paper is concerned with the study of solution stability of a parametric generalized variational inequality in reflexive Banach spaces. Under the requirements that the operator of a unperturbed problem is of class (S) +  and operators under consideration are pseudo-monotone and demicontinuous, we show that the solution map of a parametric generalized variational inequality is lower semicontinuous. The obtained results are proved without conditions related to the degree theory and the metric projection.

This is a preview of subscription content, access via your institution.

References

  1. Bessis, D.N., Ledyaev, Yu.S.,Vinter, R.B.: Dualization of the Euler and Hamiltonian inclusions. Nonlinear Anal. 43, 861–882 (2001)

    MATH  Article  MathSciNet  Google Scholar 

  2. Browder, F.E., Hess, P.: Nonlinear mappings of monotone type in Banach spaces. J. Funct. Anal. 11, 251–294 (1972)

    MATH  Article  MathSciNet  Google Scholar 

  3. Chang, D., Pang, J.S.: The generalized quasi-variational inequality problem. Math. Oper. Res. 2, 211–222 (1982)

    Article  Google Scholar 

  4. Cioranescu, I.: Geometry of Banach Spaces Duality Mappings and Nonlinear Problems. Kluwer, Dordrecht (1990)

    MATH  Google Scholar 

  5. Dafermos, S.: Sensitivity analysis in variational inequalities. Math. Oper. Res. 13, 421–434 (1988)

    MATH  Article  MathSciNet  Google Scholar 

  6. Domokos, A.: Solution sensitivity of variational inequalities. J. Math. Math. Appl. 230, 382–389 (1999)

    MATH  MathSciNet  Google Scholar 

  7. Dontchev, A.L., Hager, W.W.: Impicit functions, Lipschitz maps, and stability in optimization. Math. Oper. Res. 19, 753–768 (1994)

    MATH  Article  MathSciNet  Google Scholar 

  8. Dontchev, A.L.: Implicit function theorems for generalized equations. Math. Programming 70, 91–106 (1995)

    MathSciNet  Google Scholar 

  9. Kien, B.T., Wong, M.M., Wong, N.C., Yao, J.C.: Solution existence of variational inequalities with pseudomonotone operators in the sense of Brezis. J. Optim. Theory Appl. (2008, in press)

  10. Kien, B.T., Yao, J.C.: Localization of generalized normal maps and stability of variational inequalities in reflexive Banach spaces. Set-Valued Anal. (2008, in press)

  11. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and their Applications. Academic, London (1980)

    MATH  Google Scholar 

  12. Levy, A.B., Rockafellar, R.T.: Sensitivity analysis of solutions to generalized equations. Trans. Amer. Math. Soc. 345, 661–671 (1994)

    MATH  Article  MathSciNet  Google Scholar 

  13. Levy, A.B.: Sensitivity of solutions to variational inequalities on Banach spaces. SIAM J. Control Optim. 38, 50–60 (1999)

    MATH  Article  MathSciNet  Google Scholar 

  14. Levy, A.B., Mordukhovich, B.S.: Coderivatives in parametric optimization. Math. Programming 99, 311–327 (2004)

    MATH  Article  MathSciNet  Google Scholar 

  15. Mangasarian, O.L., Shiau, T.-H.: Lipschitz continuity of solutions of linear inequalities, programs and complementarity problems. SIAM J Control Optim. 25, 583–595 (1987)

    MATH  Article  MathSciNet  Google Scholar 

  16. Mansour, M.A., Aussel, D.: Quasimonotone variational inequalities and qusiconvex programming: qualitatve stability. Pac. J. Optim. 2, 611–626 (2006)

    MATH  MathSciNet  Google Scholar 

  17. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory. Springer, New York (2006)

    Google Scholar 

  18. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, II: Applications. Springer, New York (2006)

    Google Scholar 

  19. Robinson, S.M.: Regularity and stability for convex multivalued functions. Math. Oper. Res. 1, 130–143 (1976)

    MATH  Article  MathSciNet  Google Scholar 

  20. Robinson, S.M.: An implicit-function theorem for a class of nonsmooth functions. Math. Oper. Res. 16, 292–309 (1991)

    MATH  Article  MathSciNet  Google Scholar 

  21. Robinson, S.M.: Normal maps induced by linear transformations. Math. Oper. Res. 17, 691–714 (1992)

    MATH  Article  MathSciNet  Google Scholar 

  22. Robinson, S.M.: Constraint nondegeneracy in variational analysis. Math. Oper. Res. 28, 201–232 (2003)

    MATH  Article  MathSciNet  Google Scholar 

  23. Robinson, S.M.: Localized normal maps and the stability of variational conditions. Set-Valued Anal. 12, 259–274 (2004)

    MATH  Article  MathSciNet  Google Scholar 

  24. Robinson, S.M.: Solution continuity affine variational inequalities. SIAM. J. Optim. 18, 1046–1060 (2007)

    MATH  Article  MathSciNet  Google Scholar 

  25. Robinson, S.M., Lu, S.: Solution continuity in variational conditions. J. Glob. Optim. (2008, in press)

  26. Rockafellar, R.T., Wets, R.J.: Variational Analysis. Springer, Berlin (1998)

    MATH  Google Scholar 

  27. Sion, M.: On general minimax theorems. Pacific J. Math. 8, 171–176 (1958)

    MATH  MathSciNet  Google Scholar 

  28. Yen, N.D.: Hölder continuity of solution to a parametric variational inequality. Appl. Math. Optim. 31, 245–255 (1995)

    MATH  Article  MathSciNet  Google Scholar 

  29. Yen, N.D.: Lipschitz continuity of solutions of variational inequalities with a parametric polyhedral constraint. Math. Oper. Res. 20, 695–707 (1995)

    MATH  Article  MathSciNet  Google Scholar 

  30. Yen, N.D., Lee, G.M.: Solution sensitivity of a class of variational inequalities. J. Math. Anal. Appl. 215, 48–55 (1997)

    MATH  Article  MathSciNet  Google Scholar 

  31. Zeidler, E.: Nonlinear Functional Analysis and its Application, II/B: Nonlinear Monotone Operators. Springer, Heidelberg (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. T. Kien.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kien, B.T. Lower Semicontinuity of the Solution Map to a Parametric Generalized Variational Inequality in Reflexive Banach Spaces. Set-Valued Anal 16, 1089 (2008). https://doi.org/10.1007/s11228-008-0098-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11228-008-0098-4

Keywords

  • Parametric generalized variational inequality
  • Generalized equation
  • Lower semicontinuity
  • Pseudo-monotonicity

Mathematics Subject Classifications (2000)

  • 47J20
  • 49J40
  • 49J53
  • 90C33