Skip to main content
Log in

An Application of the Bivariate Inf-Convolution Formula to Enlargements of Monotone Operators

  • Published:
Set-Valued Analysis Aims and scope Submit manuscript

Abstract

Motivated by a classical result concerning the ε-subdifferential of the sum of two proper, convex and lower semicontinuous functions, we give in this paper a similar result for the enlargement of the sum of two maximal monotone operators defined on a Banach space. This is done by establishing a necessary and sufficient condition for a bivariate inf-convolution formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borwein, J.M.: Maximal monotonicity via convex analysis. J. Convex Anal. 13(3–4), 561–586 (2006)

    MATH  MathSciNet  Google Scholar 

  2. Boţ, R.I., Wanka, G.: A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces. Nonlinear Anal. 64(12), 2787–2804 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boţ, R.I., Csetnek, E.R., Wanka, G.: A new condition for maximal monotonicity via representative functions. Nonlinear Anal. 67(8), 2390–2402 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boţ, R.I., Grad, S.-M., Wanka, G.: Maximal monotonicity for the precomposition with a linear operator. SIAM J. Optim. 17(4), 1239–1252 (2006)

    MathSciNet  Google Scholar 

  5. Boţ, R.I., Grad, S.-M., Wanka, G.: Weaker constraint qualifications in maximal monotonicity. Numer. Funct. Anal. Optim. 28(1–2), 27–41 (2007)

    MATH  MathSciNet  Google Scholar 

  6. Boţ, R.I., Grad, S.-M., Wanka, G.: Generalized Moreau–Rockafellar results for composed convex functions. Preprint no. 16/2007. Chemnitz University of Technology, Faculty of Mathematics, Chemnitz, Germany (2007)

  7. Boţ, R.I., Hodrea, I.B., Wanka, G.: ε-optimality conditions for composed convex optimization problems. J. Approx. Theory 153(1), 108–121 (2008). doi:10.1016/j.jat.2008.03.002

    Article  MATH  MathSciNet  Google Scholar 

  8. Brøndsted, A., Rockafellar, R.T.: On the subdifferential of convex functions. Proc. Amer. Math. Soc. 16, 605–611 (1965)

    Article  MathSciNet  Google Scholar 

  9. Burachik, R.S., Iusem, A.N., Svaiter, B.F.: Enlargement of monotone operators with applications to variational inequalities. Set-Valued Anal. 5(2), 159–180 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Burachik, R.S., Jeyakumar, V.: A new geometric condition for Fenchel’s duality in infinite dimensional spaces. Math. Programming 104(2–3), 229–233 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Burachik, R.S., Jeyakumar, V., Wu, Z.-Y.: Necessary and sufficient conditions for stable conjugate duality. Nonlinear Anal. 64(9), 1998–2006 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Burachik, R.S., Svaiter, B.F.: ϵ-enlargements of maximal monotone operators in Banach spaces. Set-Valued Anal. 7(2), 117–132 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Burachik, R.S., Svaiter, B.F.: Maximal monotone operators, convex functions and a special family of enlargements. Set-Valued Anal. 10(4), 297–316 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Burachik, R.S., Svaiter, B.F.: Operating enlargements of monotone operators: new connections with convex functions. Pacific J. Optim. 2(3), 425–445 (2006)

    MATH  Google Scholar 

  15. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland Publishing Company, Amsterdam (1976)

    MATH  Google Scholar 

  16. Fitzpatrick, S.: Representing monotone operators by convex functions. In: Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988). In: Proceedings of the Centre for Mathematical Analysis, vol. 20, pp. 59–65. Australian National University, Canberra (1988)

    Google Scholar 

  17. García, Y., Lassonde, M., Revalski, J.P.: Extended sums and extended compositions of monotone operators. J. Convex Anal. 13(3–4), 721–738 (2006)

    MATH  MathSciNet  Google Scholar 

  18. Hiriart-Urruty, J.-B.: ε-subdifferential calculus. In: Aubin, J.-P., Vinter, R.B. (eds.) Convex Analysis and Optimization. Research Notes in Mathematics, vol. 57, pp. 43–92. Pitman, Boston (1982)

    Google Scholar 

  19. Marquez Alves, M., Svaiter, B.F.: Brønsted–Rockafellar property and maximality of monotone operators representable by convex functions in non-reflexive Banach spaces. J. Convex Anal. 15(4), (2008)

  20. Martínez-Legaz, J.E., Svaiter, B.F.: Monotone operators representable by l.s.c convex functions. Set-Valued Anal. 13(1), 21–46 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Martínez-Legaz, J.E., Théra, M.: ε-subdifferentials in terms of subdifferentials. Set-Valued Anal. 4(4), 327–332 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Penot, J.P., Zălinescu, C.: Bounded convergence for perturbed minimization problems. Optimization 53(5–6), 625–640 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Penot, J.P., Zălinescu, C.: Some problems about the representation of monotone operators by convex functions. ANZIAM Journal J. Aust. N.Z. Ind. Appl. Math. 47(1), 1–20 (2005)

    MATH  Google Scholar 

  24. Pomerol, J.-Ch.: Contribution à la programmation mathématique: existence des multiplicateurs de Lagrange et stabilité. Thesis. P. and M. Curie, University, Paris (1980)

  25. Ponstein, J.: Approaches to the theory of optimization. In: Cambridge Tracts in Mathematics, vol. 77. Cambridge University Press, Cambridge (1980)

    Google Scholar 

  26. Precupanu, T.: Closedness conditions for the optimality of a family of non-convex optimization problem. Math. Oper.forsch. Stat., Ser. Optim. 15(3), 339–346 (1984)

    MATH  MathSciNet  Google Scholar 

  27. Revalski, J.P., Théra, M.: Enlargements and sums of monotone operators. Nonlinear Anal. 48(4), 505–519 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Rockafellar, R.T.: On the maximal monotonicity of subdiferential mappings. Pacific J. Math 33(1), 209–216 (1970)

    MATH  MathSciNet  Google Scholar 

  29. Simons, S.: From Hahn-Banach to Monotonicity. Springer Verlag, Berlin (2008)

    MATH  Google Scholar 

  30. Simons, S., Zălinescu, C.: Fenchel duality, Fitzpatrick functions and maximal monotonicity. J. Nonlinear Convex Anal. 6(1), 1–22 (2005)

    MATH  MathSciNet  Google Scholar 

  31. Svaiter, B.F.: A family of enlargements of maximal monotone operators. Set-Valued Anal. 8(4), 311–328 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)

    MATH  Google Scholar 

  33. Zălinescu, C.: Slice convergence for some classes of convex functions. J. Nonlinear Convex Anal. 4(2), 185–214 (2003)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Ioan Boţ.

Additional information

R. I. Boţ’s research partially supported by DFG (German Research Foundation), project WA 922/1.

E. R. Csetnek’s research supported by a Graduate Fellowship of the Free State Saxony, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boţ, R.I., Csetnek, E.R. An Application of the Bivariate Inf-Convolution Formula to Enlargements of Monotone Operators. Set-Valued Anal 16, 983–997 (2008). https://doi.org/10.1007/s11228-008-0093-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-008-0093-9

Keywords

Mathematics Subject Classifications (2000)

Navigation