Skip to main content
Log in

Vector Majorization and a Robust Option Replacement Trading Strategy

  • Published:
Set-Valued Analysis Aims and scope Submit manuscript

Abstract

We show that vector majorization and its related preference sets can be used to establish useful option pricing bounds for a robust option replacement investment strategy. This robust trading strategy can help to overcome some of the difficulties in implementing arbitrage option trading strategies when there exists model inaccuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ando, T.: Majorization, doubly stochastic matrices and comparison of eigenvalues. Linear Algebra Appl. 118, 163–248 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bernardo, A., Ledoit, O.: Gain, loss and asset pricing. J. Polit. Econ. 108, 144–172 (2000)

    Article  Google Scholar 

  3. Bhatia, R.: Matrix Analysis. Springer, New York (1997)

    Google Scholar 

  4. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–654 (1973)

    Article  Google Scholar 

  5. Carr, P., Geman, H., Madan, D.B.: Pricing and hedging in incomplete markets. J. Financ. Econ. 62, 131–167 (2001)

    Article  Google Scholar 

  6. Carr, P., Madan, D.B.: Optimal positioning in derivative securities. Quant. Finance 1, 19–37 (2001)

    Article  MathSciNet  Google Scholar 

  7. Cochrane, J., Saá Requejo, J.: Good deal asset price bounds in incomplete markets. J. Polit. Econ. 108, 79–119 (2000)

    Article  Google Scholar 

  8. Cont, R.: Model uncertainty and its impact on the pricing of derivative instruments. Math. Finance 16, 519–547 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cox, J., Ross, S.: The valuation of options for alternative stochastic processes. J. Financ. Econ. 3, 144–166 (1976)

    Article  Google Scholar 

  10. Cox, J., Ross, S., Rubinstein, M.: Option pricing: a simplified approach. J. Financ. Econ. 7, 229–263 (1979)

    Article  MATH  Google Scholar 

  11. Green, T.C., Figlewski, S.: Market risk and model risk for a financial institution writing options. J. Finance 54, 1465–1499 (1999)

    Article  Google Scholar 

  12. Hernandez-Hernandez, D., Schied, A.: A control approach to robust utility maximization with logarithmic utility and time-consistent penalties. In: Proceedings of the American Control Conference (2007)

  13. Hodges, S.D., Neuberger, A.: Optimal replication of contingent claim under transaction cost. Rev. Futures Mark. 8, 222–239 (1989)

    Google Scholar 

  14. Iihan, A., Jonsson, M., Sircar, R.: Optimal investment with derivative securities. Finance Stoch. 9, 585–595 (2005)

    Article  MathSciNet  Google Scholar 

  15. Jorion, P.: Value at Risk. McGraw-Hill, New York (1997)

    Google Scholar 

  16. Kelly, J.L.: A new interpretation of information rate. Bell Syst. Tech. J. 35, 917–926 (1956)

    Google Scholar 

  17. Ledoit, J.: Essays on risk and return in the stock market. Ph. D. Dissertation. MIT (1995)

  18. Levy, H.: Upper and lower bounds of put and call otion value: stochastic dominance approach. J. Finance 40, 1197–1217 (1985)

    Article  MathSciNet  Google Scholar 

  19. MacLean, L.C., Ziemba, W.T.: The Kelly criterion: theory and practice. In: Zenios, S.A., Ziemba, W.T. (eds.) Handbook of Asset and Liability Management Volume A: Theory and Methodology. North Holland (2006)

  20. Merton, R.: Theory of rational option pricing. Bell J. Econ. Manag. Sci. 4, 141–183 (1973)

    Article  MathSciNet  Google Scholar 

  21. Musiela, M., Zariphopoulou, T.: An example of indifference prices under exponential preference. Finance Stoch. 8, 229–239 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. U.S. Government Accounting Office: Long Term Capital Management: Regulator Need to Focus Greater Attention on System Risk. US Printing Office, Washington (1999)

  23. Rouge, R., El Karoui, N.: Pricing via utility maximization of entropy. Math. Finance 10, 259–276 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Schied, A.: Optimal investment for robust utility functionals in incomplete market models. Math. Oper. Res. 30, 750–764 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sircar, R., Zariphopoulou, T.: Bounds and asymptotic approximations for utility prices when volatility is random. SIAM J. Control Optim. 43, 1328–1353 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Thorp, E.O.: The Kelly criterion in blackjack, sports betting and the stock market. Paper presented at the 10th International Conference on Gambling and Risk Taking (1997)

  27. Vince, R.: Portfolio Management Formulas. Wiley, New York (1990)

    Google Scholar 

  28. Zhu, Q.J.: Investment system specific option pricing intervals in incomplete markets. In: Proceedings of the American Control Conference (2007)

  29. Zhu, Q.J.: Mathematical analysis of investment systems. J. Math. Anal. Appl. 326, 708–720 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. J. Zhu.

Additional information

Dedicated to Boris Mordukhovich on his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Q.J. Vector Majorization and a Robust Option Replacement Trading Strategy. Set-Valued Anal 16, 335–356 (2008). https://doi.org/10.1007/s11228-008-0079-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-008-0079-7

Keywords

Mathematics Subject Classifications (2000)

Navigation